@article{M2AN_1986__20_1_113_0, author = {Santos, Juan Enrique}, title = {Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {20}, year = {1986}, pages = {113-128}, mrnumber = {844519}, zbl = {0616.76104}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1986__20_1_113_0} }
Santos, Juan Enrique. Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 20 (1986) pp. 113-128. http://gdmltest.u-ga.fr/item/M2AN_1986__20_1_113_0/
[1] General Theory of Three-Dimensional Consolidation, Journal of Applied Physics, Vol. 12 (1941), pp. 155-165. | JFM 67.0837.01
,[2] Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, Journal of the Acoustical Society of America, Vol. 28, Number 2 (1965), pp. 168-178. | MR 134056
,[3] The Elastic Coefficient of the Theory of Consolidation, Journal of Applied Mechanics, Vol. 24, Trans. Asme, Vol. 79 (1957), pp. 594-601. | MR 92472
and ,[4] Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976. | MR 521262 | Zbl 0331.35002
and ,[5] The Biot-Willis Elastic Coefficients for a Sandstone, Journal of Applied Mechanics, Vol. 26 (1959), pp. 296-297.
,[6] Existence Theorems in Elasticity-Boundary Value Problems of Elasticity with Unilateral Constrains, Encyclopedia of Physics, S. Flüge, Ed., Vol. VI a/2 : Mechanics of Solids II, C. Truesdell, Ed., Springer-Verlag, Berlin, 1972, pp. 347-424.
,[7] Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1981. | MR 548867 | Zbl 0441.65081
and ,[8] Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. | MR 259693 | Zbl 0189.40603
,[9] On Korn's Second Inequality, preprint, Institute für Angenwandte Mathematik, Albert Ludwig Universitat, Herman-Herder Str. 10, 7800, Freiburg i, Br., West Germany.
,