@article{M2AN_1985__19_4_559_0, author = {Cainzos, J. and Lobo-Hidalgo, M.}, title = {Spectral perturbations in linear viscoelasticity of the Boltzmann type}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {19}, year = {1985}, pages = {559-572}, mrnumber = {826224}, zbl = {0598.73033}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1985__19_4_559_0} }
Cainzos, J.; Lobo-Hidalgo, M. Spectral perturbations in linear viscoelasticity of the Boltzmann type. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 19 (1985) pp. 559-572. http://gdmltest.u-ga.fr/item/M2AN_1985__19_4_559_0/
[1] Several Complex Variables, Princeton, Univ.Press, Princeton (1948). | MR 27863 | Zbl 0041.05205
and ,[2] An abstract Volterra equation with application to linear viscoelasticity, J. Diff. Equations, 7 (1970), pp. 554-569. | MR 259670 | Zbl 0212.45302
,[3] Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), pp. 297-308. | MR 281400 | Zbl 0214.24503
,[4] Contraction semigroups and trend to equilibrium in continuum mechanics, Lect. Notes Math., 503, Springer, Berlin (1975), pp. 295-306. | Zbl 0345.47032
,[5] | Zbl 0148.12601
, Perturbation Theory for Linear Operators, Springer, Berlin (1966).[6] Theory of Function, II, Dover, New York (1947). | MR 19722
,[7] Propriétés spectrales de certaines équations différentielles intervenant en viscoélasticité, Rend. Sem. Mat. Univ. Polit. Torino, 39 (1981), | MR 660992 | Zbl 0489.73063
,[8] Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques complexes, Ann. Inst. Fourier, t. XIX, fasc. 2 (1970),pp. 419-493. | Numdam | MR 265628 | Zbl 0176.09903
,[9] On the vibration problem for an elastic body surrounded by a slïghtly compressible fluid, R.A.I.R.O. Analyse Numérique,17, n° 3 (1983), pp. 311-326. | Numdam | MR 702140 | Zbl 0513.73055
and ,[10] Fréquences de diffusion dans le problème de vibration d'un corps élastique plongé dans un fluide compressible de petite densité, C. R. Acad. Se. Paris, t. 295 (1982), pp. 197-200. | MR 676397 | Zbl 0501.76062
[11] On two scales method for a class of integrodifferential equations appearing in viscoelasticity, Int. Jour. Engin. Sci. (1979), pp. 857-868. | MR 659194 | Zbl 0412.73002
,