Interior and superconvergence estimates for mixed methods for second order elliptic problems
J. Douglas, Jr. ; Milner, F. A.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 19 (1985), p. 397-428 / Harvested from Numdam
@article{M2AN_1985__19_3_397_0,
     author = {J. Douglas, Jr. and Milner, F. A.},
     title = {Interior and superconvergence estimates for mixed methods for second order elliptic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {19},
     year = {1985},
     pages = {397-428},
     mrnumber = {807324},
     zbl = {0613.65110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1985__19_3_397_0}
}
J. Douglas, Jr.; Milner, F. A. Interior and superconvergence estimates for mixed methods for second order elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 19 (1985) pp. 397-428. http://gdmltest.u-ga.fr/item/M2AN_1985__19_3_397_0/

[1] J. H. Bramble and A. H. Schatz, Estimates for spline projections, R.A.I.R.O., Anal. numér., 10 (1976), pp. 5-37. | Numdam | MR 436620 | Zbl 0343.65045

[2] Higher order local accuracy by averaging in the finite element method, Math, of Comp., 31 (1977), pp. 94-111. | MR 431744 | Zbl 0353.65064

[3] J. Jr. Douglas, and J. E. Roberts, Global estimates for mixed methods for secondorder elliptic problems, Math, of Comp., 44 (1985), pp. 39-52. | MR 771029 | Zbl 0624.65109

[4] J. L. Lions and E. Magenes, Non homogeneous boundary value problems and applications, I, Springer-Verlag, Berlin, 1970. | Zbl 0223.35039

[5] F. A. Milner, Mixed finite element methods for quasi linear second order elliptic problems, Math, of Comp., 44 (1985), pp. 303-320. | MR 777266 | Zbl 0567.65079

[6] J. C. Nedelec, Mixed finite elements in R 3 , Numer. Math., 35 (1980), pp. 315-341. | MR 592160 | Zbl 0419.65069

[7] J. A. Nitsche and A. H. Schatz, Interior estimates for Ritz-Galerkin methods, Math, of Comp., 28 (1974), pp. 937-958. | MR 373325 | Zbl 0298.65071

[8] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Proceedings of a Conference on Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977, pp. 292-315. | MR 483555 | Zbl 0362.65089

[9] R. Scholz, L -convergence of saddle-point approximations for second order problems, R.A.I.R.O., Anal, numér., 11 (1977), pp. 209-216. | Numdam | MR 448942 | Zbl 0356.35026

[10] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, Montréal, 1966. | MR 251373 | Zbl 0151.15501

[11] J. M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes,Université P.-et-M. Curie, Paris, 1977.