@article{M2AN_1984__18_1_87_0,
author = {Joly, G. and Kernevez, J. P.},
title = {Apparition de motifs g\'eom\'etriques dans une membrane enzymatique},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {18},
year = {1984},
pages = {87-116},
mrnumber = {727603},
zbl = {0572.92004},
language = {fr},
url = {http://dml.mathdoc.fr/item/M2AN_1984__18_1_87_0}
}
Joly, G.; Kernevez, J. P. Apparition de motifs géométriques dans une membrane enzymatique. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 18 (1984) pp. 87-116. http://gdmltest.u-ga.fr/item/M2AN_1984__18_1_87_0/
[1] , The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London,Vol. B 237 (1952), 37-72.
[2] et , On symmetry breaking instabilities in dissipativeSystems, J. Chem. Phys., 46 (1967), 3542-3550.
[3] ,, et , Symmetry breaking instabilities in biological Systems, Nature, 223 (1969), 913-916.
[4] et , Instability and dynamic pattern in cellular networks, J. Theor. Biol., 32 (1971), 507-537.
[5] et , A theory of biological pattern formation, Kybernetika (Prague) 12 (1972), 30-39.
[6] , Positional information and the developmenl of pattern and form: Cowan J. D. (éd.), Some mathematical questions in biology 5 (The American Mathematical Society, Providence, 1974).
[7] et , Modeis for cell differentiation and génération ofpolarity in diffusion-controlled morphogenetic fields, Bull. Math. Biol., 37 (1975), 637-657. | Zbl 0317.92016
[8] , Analytical physiology of cells and deveioping organisms (Academic Press, New York, 1976).
[9] , Lectures on nonlinear differential-equation models in biology Clarendon Press, Oxford, 1977). | Zbl 0379.92001
[10] et , Self-organization in nonequilibrium Systems, frontdissipative structures to order through fluctuations, fronmdissipative structures to order through fluctuations (Wiley-Interscience, New York, 1977). | MR 522141 | Zbl 0363.93005
[11] et , Spatial structures in a model substrate-inhibitiondiffusion System, Z.Naturforsch, 33 C (1978), 580-586.
[12] , Mathematical aspects of reacting and diffusing Systems, (Springer-Verlag, Berlin, 1979). | MR 527914 | Zbl 0403.92004
[13] et , Chemical patterns in circular morphogenetic fields, Bull. Math. Biol., 41 (1979), 461-468. | MR 631874
[14] , and , Hystérésis,oscillations andpattern formation inrealistic immobilized enzyme Systems,J. Math. Biology, 7 (1979), 41-56. | MR 648839 | Zbl 0433.92014
[15] , et , Control of sequential compartmentformation in Drosophila, a uniform mechanism may control the locations of successivebinary developmental commitments, Science, Vol. 199 (1978), 259-270.
[16] et , Parameters of the wing imaginal disc deve-lopment of Drosophila melanogaster, Develop. Biol., 24 (1971), 61-87.
[17] , et , Developmental compartmentaliza-tion ofthe wing disk of Drosophila, Nature NewBiol., 245(1973), 251-253.
[18] , Enzyme Mathematics : Studies in Mathematics and its applications, Vol. 10 (North-Holland, 1980). | MR 594596 | Zbl 0446.92007
[19] et , Bifurcation and stability in a chemical system, J. Math. Anal, and Appi. 59 (1977), 69-91. | MR 462242 | Zbl 0355.35009
[20] et , Bifurcation of localized disturbances in a model bioche-mical reaction, Siam J. Appl. Math., Vol. 30, n° 1(1976), 123-135. | Zbl 0328.76065
[21] , Geometrie theory of semilinear parabolie équations, lecture notes in Vlathematics n° 840, Springer-Verlag, NewYork, 1981. | MR 610244 | Zbl 0456.35001
[22] , Perturbation theory for linear operators (Springer-Verlag, New York, 1960). | Zbl 0435.47001
[23] , Bifurcation et stabilité. Publications mathématiques d'Orsay, N° 31 (Université de Paris Sud, Orsay, 1972).
[24] et , Perturbed bifurcation theory, Arch. Rat. Mech. Anal., Vol. 50 (1973), 159-175. | MR 336479 | Zbl 0254.47080
[25] , Topics in bifurcation theory, Ph. D. Thesis, California ïnstitute of Technology, Pasadena, California, 1978.
[26] , TWOnewbifurcation phenomena, IRIA Research Report n° 369 (1979). | Zbl 0505.35009
[27] et , Bifurcation, perturbation of simple eigen values, and linearized stability, Arch. Rat. Mech. Anal. 52 (1973), 161-180. | MR 341212 | Zbl 0275.47044
[28] , Dependence of solution of nonlinear Systems on a parameter, ACM Transactions on Mathematical Software, Vol 2, 1 (March 1976), 98-107. | Zbl 0317.65019
[29] , Numerical solution of bifurcation andnon linear eigen value problems, 359-384 : Rabinowitz P.H. (éd.), Applications of bifurcation theory (Academic Press, New York, 1977). | MR 455353 | Zbl 0581.65043
[30] , , , Calculation of the bifurcation branches inreaction-difjusion Systems (à paraître dans Acta Applicandae Mathematicae).
[31] ,, , , et , Spatio-temporal organization in immobilized enzyme Systems, à paraître. | Zbl 0523.92008
[32] ,, , et , Propagationd'onde dans un système à enzyme immobilisée, CRAS 387, A (1978), 961-964. | MR 520780 | Zbl 0391.65050
[33] , et , Control of Systems with multiple steadystates, pp. 635-649 in : Glowinski, R. and Lions, J. L. (éd.), Computing Methods in Applied Sciences and Engineering, North Holland, Amsterdam, 1982. | MR 784656 | Zbl 0499.65041