@article{M2AN_1983__17_4_385_0, author = {Brezzi, F. and Caffarelli, Luis}, title = {Convergence of the discrete free boundaries for finite element approximations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {17}, year = {1983}, pages = {385-395}, mrnumber = {713766}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1983__17_4_385_0} }
Brezzi, F.; Caffarelli, L. A. Convergence of the discrete free boundaries for finite element approximations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 17 (1983) pp. 385-395. http://gdmltest.u-ga.fr/item/M2AN_1983__17_4_385_0/
[1] Estimations d’erreur dans pour les inéquations à obstacle » in « Mathematica! Aspects of Finite Element Methods », Lecture Notes in Math 606, Springer, 1977 | MR 488847 | Zbl 0374.65053
, «[2] A remark on the Hausdorff measure of afree boundary, and the convergence of coincidence sets , Bollettino U M I (5) 18 A (1981) 109-113 | MR 607212 | Zbl 0453.35085
,[3] Fonctions de Green discretes et principe du maximum discret, Thesis Univ Paris (1971)
,[3] The finite Element Methods for Elhptic Problems, North-Holland (1978) | MR 1115235 | Zbl 0999.65129
,[5] Maximum principle and uniform convergence for the finite element method, Comput Math Appl Mech Engrg 2 (1973) 17-31 | MR 375802 | Zbl 0251.65069
, ,[6] -convergence of finite element approximations, in «Mathematical Aspects of Finite Element Methods», Lecture Notes in Math 606, Springer, 1977 | MR 488848 | Zbl 0362.65088
, «[7] Zur -Konvergenz linearer jiniter elemente beim Dinchlet problem, Math Z 149 (1977) 69-77 | MR 488859 | Zbl 0321.65055
,[8] Optimal -estimates for the finite element method on irregular meshes, Math Comput 30 (1976) 681-697 | MR 436617 | Zbl 0349.65060
,