On the vibration problem for an elastic body surrounded by a slightly compressible fluid
Ohayon, R. ; Sanchez-Palencia, E.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 17 (1983), p. 311-326 / Harvested from Numdam
@article{M2AN_1983__17_3_311_0,
     author = {Ohayon, R. and Sanchez-Palencia, E.},
     title = {On the vibration problem for an elastic body surrounded by a slightly compressible fluid},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {17},
     year = {1983},
     pages = {311-326},
     mrnumber = {702140},
     zbl = {0513.73055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1983__17_3_311_0}
}
Ohayon, R.; Sanchez-Palencia, E. On the vibration problem for an elastic body surrounded by a slightly compressible fluid. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 17 (1983) pp. 311-326. http://gdmltest.u-ga.fr/item/M2AN_1983__17_3_311_0/

[1] S. Bochner and W.T. Martin, Severai complex variables, Princeton Univ. Press, Princeton (1948). | MR 27863 | Zbl 0041.05205

[2] S. Cerneau and E. Sanchez-Palencia, Sur les vitrations libres des corps élastiquesplongés dans les fluides, Jour. Méca., 15(1976), pp. 399-425. | MR 428884 | Zbl 0332.76058

[3] T. Kato, Perturbation theory for linear operators, Springer, Berlin (1966). | Zbl 0148.12601

[4] K. Knopp, Theory offunctions, Part II, Dover, New-York.

[5] R. Kress, On the limiting behaviour of solutions to intégral équations associatedwith time harmonie wave équations for small frequencies, Math. Meth. Appl. Sci.7 (1979), pp. 89-100. | MR 548408 | Zbl 0418.35031

[6] G. Hachem, Sur les fréquences de diffusion(scattering) d'un corps élastique coupléavec l'air, Anna. Fac. Sci. Toulouse, 2 (1980), pp. 193-218. | Numdam | MR 614012 | Zbl 0481.35070

[7] P. Lax and R. Phillips, Scattering theory, cad. Press, New-York (1967). | MR 217440 | Zbl 0186.16301

[8] H. Morand and R. Ohayon, Substructure variational analysis of the vibrations ofcoupled fluid-structure Systems. Finite element results, Int. J. for Num. Meth. inEngng., 14 (1979), pp. 741-755. | Zbl 0402.73052

[9] B. Nicolas-Vullierme, R. Ohayon, R. Valid, Vibrations harmoniques de struc-tures élastiques immergées dans unliquide, 81e session A.T.M.A., Paris (mai 1981), T. P.,O.N.E.R.A., n° 1981-40.

[10] R. Ohayon, R. Valid, True symmetrie formulations offree vibrations of fluid-structure interaction, Proc. Int.Conf. on Num. Meth. forCoupled Problems. Univ.of Swansea (sept. 1981) T.P., O.N.E.R.A., n° 1981-78.

[11] E. Sanchez-Palencia, Non homogeneous media and vibration theory, Lect. Notes Phys., 127, Springer, Berlin (1980). | Zbl 0432.70002

[12] V. I. Smirnov, A course ofhigher mathematics, vol. IV,Pergamon, Oxford (1964).

[13] S. Steinberg, Meromorphic families of compact operators, Arch. Rat.Mech. Anal.,31 (1968), pp. 372-379. | MR 233240 | Zbl 0167.43002

[14] T. C. Su, The effect ofviscosïty onfree vibrations of submerged fluid-fïlled sphericalshells, Jour. Sound Vibr., 77(1981), pp. 101-126. | Zbl 0477.73051