@article{M2AN_1983__17_1_5_0, author = {Bardos, Claude and Kuo Pen Yu}, title = {On the existence and the regularity of an initial boundary problem of vorticity equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {17}, year = {1983}, pages = {5-16}, mrnumber = {695449}, zbl = {0524.35023}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1983__17_1_5_0} }
Bardos, C.; Kuo Pen Yu. On the existence and the regularity of an initial boundary problem of vorticity equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 17 (1983) pp. 5-16. http://gdmltest.u-ga.fr/item/M2AN_1983__17_1_5_0/
[1] Existence et Unicité de la solution de l'équation d'Euler en dimension deux. J. Math. Anal. and Appl. 40 (1972) 769-790. | MR 333488 | Zbl 0249.35070
,[2] On the classical solution of the two dimensional non stationary Euler Equation. Arch. Rat. Mech. Anal. 25 (1967) 302-324. | MR 211057 | Zbl 0166.45302
,[3] A class of difference scheme for two dimensional vorticity equation of viscous fluid. Acta mathematica Sinica (1974) 242-258. | MR 458929
,[4] Recorrected up wind scheme for in compressible viscous fluid problems. Acta Mathematica Sinica (1976) 30-38. | Zbl 0358.76022
,[5] Difference Methods in Numerical weather prediction scientia atmospherica Sinica (1978) 103-114.
,[6] Difference Methods of fluid dynamics (I). Numerical solution of two dimensional vorticity Equation Acta Mechanica Sinica (1979) 129-147. | Zbl 0463.76029
,[7] The mathematical theory of viscous Incompressible flow. Gordon and Breach, New York (1969). | MR 254401 | Zbl 0184.52603
et ,[8] Existence theorem for the flow of an incompressible fluid in two dimensions. Trans of the A.M.S. 42 (1937) 497-513. | MR 1501931 | Zbl 0018.12902
,[9] Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène et impressible pendant un temps infiniment long. Math Z, 37 (1933) 727-738. | Zbl 0008.06901
,