Conforming equilibrium finite element methods for some elliptic plane problems
Křížek, Michal
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 17 (1983), p. 35-65 / Harvested from Numdam
Publié le : 1983-01-01
@article{M2AN_1983__17_1_35_0,
     author = {K\v r\'\i \v zek, Michal},
     title = {Conforming equilibrium finite element methods for some elliptic plane problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {17},
     year = {1983},
     pages = {35-65},
     mrnumber = {695451},
     zbl = {0541.76003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1983__17_1_35_0}
}
Křížek, Michal. Conforming equilibrium finite element methods for some elliptic plane problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 17 (1983) pp. 35-65. http://gdmltest.u-ga.fr/item/M2AN_1983__17_1_35_0/

[1] D. J. Allman, On compatible and equilibrium models with linear stresses for stretching of elastic plates, in [27]. | Zbl 0407.73059

[2] F. Brezzi, Non-standard finite elements for fourth order elliptic problems, in [27]. | Zbl 0411.41013

[3] G. R. Busacker and T. L. Saaty, Finite graphs and network : an introduction with applications, McGraw-Hill, New York, London, Sydney, 1965. | MR 209176 | Zbl 0146.20104

[4] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland publishing company, Amsterdam, NewYork, Oxford, 1978. | MR 520174 | Zbl 0383.65058

[5] G. Duvaut and J. L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, Heidelberg, NewYork, 1976. | MR 521262 | Zbl 0331.35002

[6] M. Fortin, Approximation des fonctions à divergence nulle par la méthode des éléments finis, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Paris, 1972, vol. 1, 99-103. | MR 478666 | Zbl 0277.76024

[7] B. M. Fraeijs De Veubeke and M. Hogge, Dual analysis for heat conduction problems by finite elements, Internat. J. Numer. Methods Energ. 5 (1972), 65-82 | Zbl 0251.65061

[8] V. Girault and P. A. Raviart, Finite element approximation of the Navier-Stokes equation, Springer-Verlag, Berlin, Heidelberg, New York, 1979. | MR 548867 | Zbl 0413.65081

[9] R. Glowinski and O. Pironneau, On numerical methods for the Stokes problem, in [27]. | Zbl 0415.76024

[10] B. J. Hartz and V. B. Watwood, An equilibrium stress field model for finite element solution of two-dimensional electrostatic problems, Internat. J. Solids and Structures 4 (1968), 857-873. | Zbl 0164.26201

[11] J. Haslinger and I. Hlavacek, Convergence of a finite element method based on the dual variational formulation, Apl. Mat. 21 (1976), 43-65. | MR 398126 | Zbl 0326.35020

[12] I. Hlavacek, Convergence of an equilibrium finite element model for plane elastostatics, Apl. Mat. 24 (1979), 427-457. | MR 547046 | Zbl 0441.73101

[13] I. Hlavacek, The density of solenoidal functions and the convergence of a dual finite element method, Apl. Mat. 25 (1980), 39-55. | MR 554090 | Zbl 0424.65056

[14] C. Johnson, On the convergence of a mixed finite element method for plate bending problems, Numer. Math. 21 (1973), 43-62. | MR 388807 | Zbl 0264.65070

[15] C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Maht. 30 (1978), 103-116. | MR 483904 | Zbl 0427.73072

[16] D. W. Kelly, Bounds on discretization error by special reduced integration of the Lagrange family of finite elements, Internat. J. Numer. Methods Energ. 15 (1980), 1489-1506. | MR 595369 | Zbl 0438.73057

[17] M. Krizek, An equilibrium finite element method in three-dimensional elasticity, Apl. Mat. 27 (1982), 46-75. | MR 640139 | Zbl 0488.73072

[18] B. Mercier, Topics in finite element solution of elliptic problems, Springer-Verlag, Berlin, Heidelberg, New York, 1979.

[19] J. Necas, Les méthodes directes en théorie des équations elleptiques, Academia, Prague, 1967. | MR 227584

[20] J. Necas and I. Hlavacek, Mahtematical theory of elastic and elasto-plastic bodies : an introduction, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1981. | MR 600655 | Zbl 0448.73009

[21] A. R. S. Ponter, The application of dual minimum theorems to the finite element solution of potential problems with special reference to seepage, Internat. J. Numer. Methods Energ. 4 (1972), 85-93. | MR 297211 | Zbl 0254.76095

[22] G. Sander, Application of the dual analysis principle , Proceedings of the IUTAM Symposium on High Speed Computing of Elastic Structures, Congrès et Colloques de l'Université de Liège (1971), 167-207.

[23] R. Temam, Navier-Stokes equations North-Holland publishing company, Amsterdam, New York, Oxford, 1977. | MR 603444 | Zbl 0426.35003

[24] J. M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thesis, Université Paris VI, 1977.

[25] J. M. Thomas and M. Amara, Approximation par éléments finis équilibre du système de l'élasticité linéaire, C.R. Acad. Sc. Paris, t. 286 (1978), 1147-1150. | MR 495556 | Zbl 0395.73011

[26] J. M. Thomas and M. Amara, Equilibrium finite elements for the linear elastic problem, Numer. Math. 33 (1979), 367-383. | MR 553347 | Zbl 0401.73079

[27] Energy methods in finite element analysis, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979. | MR 536995