Triangulation automatique d’un polyèdre en dimension N
Hermeline, F.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 16 (1982), p. 211-242 / Harvested from Numdam
@article{M2AN_1982__16_3_211_0,
     author = {Hermeline, F.},
     title = {Triangulation automatique d'un poly\`edre en dimension $N$},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {16},
     year = {1982},
     pages = {211-242},
     mrnumber = {672417},
     zbl = {0567.65083},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/M2AN_1982__16_3_211_0}
}
Hermeline, F. Triangulation automatique d’un polyèdre en dimension $N$. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 16 (1982) pp. 211-242. http://gdmltest.u-ga.fr/item/M2AN_1982__16_3_211_0/

[1] Y Babuska et A K Aziz, On the angle condition in the finite element method, Siam J Num Anal, Vol 13, n° 2 (1976) | MR 455462 | Zbl 0324.65046

[2] M Berger, Geometrie tome 3 convexes et polytopes, polyedres réguliers, aires et volumes, Fernand Nathan Paris (1978) | Zbl 0423.51001

[3] W Brostaw, Jp Dussault et B L Fox, Construction of Vornot polyhedra, J Comp Phys 29 (1978), pp 81-92 | MR 510461 | Zbl 0392.73097

[4] J Carnet, Une methode heuristique de maillage dans le plan pour la mise en oeuvre des elements finis, These Paris (1978)

[5] J C Cavendish, Automatic triangulation of arbitrary planar domains for the finite element method, Int J Num Meth Engng 8 (1974) pp 679-696 | Zbl 0284.73045

[6] P G Ciarlet, The finite element method for elliptic problems, North-Holland (1978) | MR 520174 | Zbl 0383.65058

[7] H S M Coxeter, L Few et C A Rogers, Covering space with equal spheres, Mathematika 6(1959), pp 147-157 | MR 124821 | Zbl 0094.35301

[8] B Delaunay, Sur la sphère vide, Bul Acad Sci URSS Class Sci Nat (1934), pp 793-800 | Zbl 0010.41101

[9] W F Eddy, A new convex hull algorithm for planar sets, ACM TMS, vol 3, n° 4 (1977), pp 398-403 | Zbl 0374.68036

[10] P J Green et R Sibson, Computing Dirichlet tesselations in the plane, The Computer Journal, vol 21, n°2 (1977), pp 168-173 | MR 485467 | Zbl 0377.52001

[11] F Hermeline, Une methode automatique de maillage en dimension n, These Paris (1980)

[12] D T Lee, Two-dimensional Voronot diagrams in Lp-Metric, J of the ACM, vol 27, n° 4 (1980), pp 604-618 | MR 594689 | Zbl 0445.68053

[13] S Nordbeck et B Rystedt, Computer cartography point in polygon programs, Bit, 7 (1967), pp 39-64 | Zbl 0146.14902

[14] C S Peskin, Lagrangian method for the Navier-Stokes equations, Communication non publiée

[15] F P Preparata et S J Hong, Convex hull of finite sets of points in two and three dimension, Comm of the ACM, vol 20, n°2 (1977), p 87 | MR 488985 | Zbl 0342.68030

[16] R Sibson, Locally equiangular triangulations, Comp J , vol 21, n° 3 (1977), p 243 | MR 507358

[17] W C Thacker, A brief review of techniques for generating irregular computational grids, Int J Num Met Engng, vol 15 (1980), pp 1335-1341 | Zbl 0438.76003

[18] P F Watson, Computing the n-dimensional Delaunay tesselation with application to Voronot polytopes, The Computer Journal, vol 24, n° 2 (1981) | MR 619577

[19] A Bowyer, Computing Dirichlet tesselations, The Computer Journal, vol 24, n° 2 (1981) | MR 619576