@article{M2AN_1982__16_1_39_0, author = {Qun, Lin}, title = {Iterative refinement of finite element approximations for elliptic problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {16}, year = {1982}, pages = {39-47}, mrnumber = {648744}, zbl = {0481.65064}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1982__16_1_39_0} }
Qun, Lin. Iterative refinement of finite element approximations for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 16 (1982) pp. 39-47. http://gdmltest.u-ga.fr/item/M2AN_1982__16_1_39_0/
Linear spectral approximation in Banach spaces (to appear).
,The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,Elliptic partial differential equations of second order.Springer-Verlag, Berlin-Heidelberg-New York (1977). | MR 473443 | Zbl 0361.35003
and ,Bemerkungen zur iterierten Defektkorrektur. (To appear in Rev.Roumaine Math. Pure Appl.) (1981). | MR 646400
,Some problems about the approximate solution for operator equations. Acta Math. Sinica 22 (1979) 219-230. | MR 542459 | Zbl 0397.65070
,Method to increase the accuracy of Lowe-degree finite element solutions... Computing Methods in Applied Sciences and Engineering, North-Holland, Amsterdam (1980). | MR 584026 | Zbl 0438.73056
,Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer.Math. 11 (1968) 346-348. | MR 233502 | Zbl 0175.45801
,An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. | MR 373326 | Zbl 0321.65059
,Improvement by iteration for compact operator equations. Math. Comp. 30(1976) 758-764. | MR 474802 | Zbl 0343.45010
,The defect correction principle and discretization methods. Numer. Math.29 (1978) 425-443. | MR 474803 | Zbl 0362.65052
,Analysis of the finite element method. Prentice-Hall, EnglewoodCliffs,N. J. (1973). | MR 443377 | Zbl 0356.65096
and ,