Équations d'évolution linéaires du second ordre et méthodes multipas
Godlewski, E. ; Puech-Raoult, A.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 13 (1979), p. 329-353 / Harvested from Numdam
Publié le : 1979-01-01
@article{M2AN_1979__13_4_329_0,
     author = {Godlewski, E. and Puech-Raoult, A.},
     title = {\'Equations d'\'evolution lin\'eaires du second ordre et m\'ethodes multipas},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {13},
     year = {1979},
     pages = {329-353},
     mrnumber = {555383},
     zbl = {0426.65051},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/M2AN_1979__13_4_329_0}
}
Godlewski, E.; Puech-Raoult, A. Équations d'évolution linéaires du second ordre et méthodes multipas. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 13 (1979) pp. 329-353. http://gdmltest.u-ga.fr/item/M2AN_1979__13_4_329_0/

1. M. Crouzeix, Approximation des équations d'évolution linéaires par des méthodes multipas. Étude Numérique des Grands Systèmes. Rencontres I.R.I.A.-Novosibirsk, juin 1976, Dunod, Paris. | Zbl 0389.65035

2. G. Dahlquist, On Accuracy and Unconditional StabiUty of Linear Multistep Methods for Second Order Differential Equations, B.I.T., vol. 18, 1978, p. 133-136. | MR 499228 | Zbl 0378.65043

3. C. W. Gear, The Stability of Numerical Methods for Second Order Ordinary Differential Equations, S.I.A.M. J. Num. Anal., vol. 15, 1978, p.188-197. | MR 468191 | Zbl 0388.65030

4. E. Gekeler, Linear Multistep Methods and Galerkin Procedures for Initial Boundary Value Problems, S.I.A.M. J. Numer. Anal., vol. 13, 1976, p. 536-548. | MR 431749 | Zbl 0335.65042

5. M. Geradin, A Classification and Discussion of Integration Operators for Transient Structural Response, A.I.A.A. paper n° 74-105.

6. E. Godlewski et A. Puech-Raoult, Thèse de 3e cycle (à paraître).

7.P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley and Sons, New York, London, 1962. | MR 135729 | Zbl 0112.34901

8.P. S. Jensen, Stability Analysis of Structures by Stiffly Stable Methods, Computer and Structures, vol. 4, p. 615-626.

9. P. A. Raviart, Multistep Methods and Parabolic Equations, Funct. Anal, and Num.Anal., Japan-France Seminar, Tokyo and Kyoto, 1976; H. FUJITA, éd., Japan Society for the Promotion of Science, 1978, p. 429-454.

10.W. Rudin, Real and Complex Analysis, McGraw-Hill Book Company, New York, 1966. | MR 210528 | Zbl 0142.01701

11.G. Strang et G. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, 1973. | MR 443377 | Zbl 0356.65096