@article{M2AN_1979__13_4_329_0, author = {Godlewski, E. and Puech-Raoult, A.}, title = {\'Equations d'\'evolution lin\'eaires du second ordre et m\'ethodes multipas}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {13}, year = {1979}, pages = {329-353}, mrnumber = {555383}, zbl = {0426.65051}, language = {fr}, url = {http://dml.mathdoc.fr/item/M2AN_1979__13_4_329_0} }
Godlewski, E.; Puech-Raoult, A. Équations d'évolution linéaires du second ordre et méthodes multipas. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 13 (1979) pp. 329-353. http://gdmltest.u-ga.fr/item/M2AN_1979__13_4_329_0/
1. Approximation des équations d'évolution linéaires par des méthodes multipas. Étude Numérique des Grands Systèmes. Rencontres I.R.I.A.-Novosibirsk, juin 1976, Dunod, Paris. | Zbl 0389.65035
,2. On Accuracy and Unconditional StabiUty of Linear Multistep Methods for Second Order Differential Equations, B.I.T., vol. 18, 1978, p. 133-136. | MR 499228 | Zbl 0378.65043
,3. The Stability of Numerical Methods for Second Order Ordinary Differential Equations, S.I.A.M. J. Num. Anal., vol. 15, 1978, p.188-197. | MR 468191 | Zbl 0388.65030
,4. Linear Multistep Methods and Galerkin Procedures for Initial Boundary Value Problems, S.I.A.M. J. Numer. Anal., vol. 13, 1976, p. 536-548. | MR 431749 | Zbl 0335.65042
,5. A Classification and Discussion of Integration Operators for Transient Structural Response, A.I.A.A. paper n° 74-105.
,6.Thèse de 3e cycle (à paraître).
et ,7.Discrete Variable Methods in Ordinary Differential Equations, John Wiley and Sons, New York, London, 1962. | MR 135729 | Zbl 0112.34901
,8.Stability Analysis of Structures by Stiffly Stable Methods, Computer and Structures, vol. 4, p. 615-626.
,9.Multistep Methods and Parabolic Equations, Funct. Anal, and Num.Anal., Japan-France Seminar, Tokyo and Kyoto, 1976; H. FUJITA, éd., Japan Society for the Promotion of Science, 1978, p. 429-454.
,10.Real and Complex Analysis, McGraw-Hill Book Company, New York, 1966. | MR 210528 | Zbl 0142.01701
,11.An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, 1973. | MR 443377 | Zbl 0356.65096
et ,