Approximation by finite element functions using local regularization
Clément, Ph.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 9 (1975), p. 77-84 / Harvested from Numdam
@article{M2AN_1975__9_2_77_0,
     author = {Cl\'ement, Ph.},
     title = {Approximation by finite element functions using local regularization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {9},
     year = {1975},
     pages = {77-84},
     mrnumber = {400739},
     zbl = {0368.65008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1975__9_2_77_0}
}
Clément, Ph. Approximation by finite element functions using local regularization. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 9 (1975) pp. 77-84. http://gdmltest.u-ga.fr/item/M2AN_1975__9_2_77_0/

[1] Ph. Clement, Un problème d'approximation par éléments finis, Annexe à la thèse de Doctorat, Ecole Polytechnique Fédérale de Lausane, 1973.

[2] J. J Goel, Construction of Basic Functions for Numerical Utilisation of Ritz-s Method, Numer. Math., (1968), 12, 435-447. | MR 256580 | Zbl 0271.65061

[3] M. Zlamal, On the Finite Element Method, Numer. Math., (1968), 12, 394-409. | MR 243753 | Zbl 0176.16001

[4] J. H. Bramble and M. Zlamal, Triangular Elements in the Finite Element Method, Math. of Comp. vol. 24, number 12, (1970), 809-820. | MR 282540 | Zbl 0226.65073

[5] G. Strang, Approximation in the finite element method, Numer Math., (1972), 19, 81-98. | MR 305547 | Zbl 0221.65174

[6] G Dupuis et J. J. Goel, Eléments finis raffinés en élasticité bidimensionnelle, ZAMP, vol. 20, (1969), 858-881. | Zbl 0201.26604

[7] J. Descloux, Méthodes des éléments finis, Dept. de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1973.

[8] J. Descloux, Two Basic Properties of Finite Eléments, Dept. of Math., Ecole Polytechnique Fédérale de Lausanne, 1973.

[9] P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in R n with applications to finite elements methods, Arch. Rational Mech. Anal., 46 (1972), 177-199. | MR 336957 | Zbl 0243.41004

[10] G. Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics 8, Springer, 1965. | MR 209639 | Zbl 0138.36104

[11] S. Hilbert, A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations, Math. of Comp., 27 (1973), 81-89.tisf | MR 331715 | Zbl 0257.65087