@article{M2AN_1974__8_2_5_0, author = {Bramble, J. H. and Thom\'ee, V.}, title = {Interior maximum norm estimates for some simple finite element methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {8}, year = {1974}, pages = {5-18}, mrnumber = {359354}, zbl = {0301.65065}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1974__8_2_5_0} }
Bramble, J. H.; Thomée, V. Interior maximum norm estimates for some simple finite element methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 8 (1974) pp. 5-18. http://gdmltest.u-ga.fr/item/M2AN_1974__8_2_5_0/
[1] On the convergence of difference approximations for second order uniformly elliptic operators. Numerical Solution of Field Problems in Continuum Physics. SIAM-AMS Proceedings, Vol. 2, Providence R.I. 1970, 201-209. | MR 260200 | Zbl 0234.65086
,[2] Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal., 36 (1970), 348-355. | MR 255043 | Zbl 0192.44503
,[3] Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two-dimensional domain with a smooth boundary. -. Vy_isl. Mat. i Mat. Fir. 9 (1969),1102-1120 (Russian). (Translation : U.S.S.R. Comput. Math, and Math. Phys.). | MR 295599 | Zbl 0234.65093
and ,[4] Discrete interior Schauder estimates for elliptic difference operators. SIAM J. Numer. Anal., 5 (1968), 626-645. | MR 238505 | Zbl 0176.15901
,[5] Approximate solution of Dirichlet's problem using approximating polygonal domains. Topics in Numerical Analysis. Edited by J. J. H. Miller. Academic Press 1973, 311-328. | MR 349034 | Zbl 0276.65054
,[6] Elliptic difference equations and interior regularity, Numer. Math. II (1968), 196-210. | MR 224303 | Zbl 0159.38204
and ,