Graphes h-maximaux
Chein, M.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 4 (1970), p. 71-81 / Harvested from Numdam
Publié le : 1970-01-01
@article{M2AN_1970__4_3_71_0,
     author = {Chein, M.},
     title = {Graphes $h$-maximaux},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {4},
     year = {1970},
     pages = {71-81},
     mrnumber = {295957},
     zbl = {0224.05103},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/M2AN_1970__4_3_71_0}
}
Chein, M. Graphes $h$-maximaux. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 4 (1970) pp. 71-81. http://gdmltest.u-ga.fr/item/M2AN_1970__4_3_71_0/

[1] J. Battle, F. Harary, et Y. Kodoma, « Every planar graph with nine points has a nonplanar complement», Bull. Amer. Math. Soc., 68 (1962), 569-571. | MR 155314 | Zbl 0114.14602

[2] L. W. Beineke, The decomposition of complete graphs into planar subgraphs in «graph theory and theorical physics». Edited by F. Harary Acedemic Press, 1967. | MR 233730 | Zbl 0207.22901

[3] L. W. Beineke, Complete bipartite graphs: decomposition into planar subgraphs in «A seminar on graph Theory» (Harary ed.), Acedemic Press, N. Y., 1967. | MR 215745 | Zbl 0207.22901

[4] L. W. Beineke et F. Harary, « The thickness of the complete graph», Canada J. Math., 17, 1965, 850-859. | MR 186573 | Zbl 0135.42104

[5] C. Berge, , Théories de graphes et ses application, Dunod, 1958. | MR 102822 | Zbl 0088.15404

[6] A. M. Hobbs et J. W. Grossman, « A class of thickness-minimal graphs», Jal Res. NBS (Math. Science), 72B, 2 (1968), 145-153. | MR 239994 | Zbl 0162.27702

[7] A. M. Hobbs, A Survey of Thickness, in «Recent Progress in Combinatorics», (Tutte éd.), Acad. Press, N. Y., 1969. | MR 255436 | Zbl 0194.56102

[8] O. Ore, The four color problem. Academic Press, 1967. | MR 216979 | Zbl 0149.21101

[9] C. Picard, « Graphes complémentaires et graphes planaires», Rev. Franç. Rech. Oper., 8 (1964), 329-343. | Zbl 0125.11603

[10] W. T. Tutte, « The thickness of a graph», Indag. Math., 25, 1963, 567-577. | MR 157372 | Zbl 0123.17002

[11] W. T. Tutte, « The nonbiplanar character of the complete 9-graph», Can. Math. Bull, 6 (1963), 319-330. | MR 159318 | Zbl 0113.38803