On the convergence of optimization algorithms
Polak, E.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 3 (1969), p. 17-34 / Harvested from Numdam
@article{M2AN_1969__3_1_17_0,
     author = {Polak, E.},
     title = {On the convergence of optimization algorithms},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {3},
     year = {1969},
     pages = {17-34},
     mrnumber = {248968},
     zbl = {0174.47906},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1969__3_1_17_0}
}
Polak, E. On the convergence of optimization algorithms. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 3 (1969) pp. 17-34. http://gdmltest.u-ga.fr/item/M2AN_1969__3_1_17_0/

[1]. P. Wolfe, « On the Convergence of Gradient Methods under Constraints », IBM Research Report RZ-204, March 1, 1966, IBM Research Laboratory, Zurich, Switzerland.

[2], W. I. Zangwill, « Convergence Conditions for Nonlinear Programming Algorithms », Working Paper No 197, Center for Research in Management Science, University of California, Berkeley, California, November 1966.

[3]. D. M. Topkis, A. Veintott Jr., On the convergence of some feasible direction algorithms for nonlinear programming, J. SIAM Control, vol.5, n° 2, May 1967 p. 268. | MR 213161 | Zbl 0158.18805

[4]. E. Polak and M. Deparis, « An algorithm for minimum energy control », University of California, Electronics Research Laboratory, Berkeley, California, ERL Memorandum M225, November l, 1967.

[5]. G. Zoutendijk, « Methods of feasible directions: Astudy in linear and nonlinear programming », Elsevier, Amsterdam, 1960. | Zbl 0097.35408

[6]. J. B. Rosen, « The gradient projection method for nonlinear programming. Part I. Linear constraints », J. SIAM, vol. 8, n° 1, March 1960, pp. 181-217. | MR 112750 | Zbl 0099.36405

[7]. E. Polak, « On primal and dual methods for solving discrete optimal control problems », Proc. of the 2nd International Conference on Computing Methods in Optimization Problems, San Remo, Italy, September 9-13, 1968. | MR 280243 | Zbl 0208.17403

[8], E. Polak, G. Ribiere, « Note sur la convergence de méthodes de directions conjuguées ». | Numdam | Zbl 0174.48001

[9]. P. Kalfon, G. Ribiere, J. C. Sogno, « A method of feasible directions using projection operators », Proc. IFIP Congress 68, Edinburgh, August 1968. | MR 260163 | Zbl 0196.18003

[10]. M. Cannon, C. Cullum and E. Polak, « Constrained minimization problems in finite dimensional spaces », J. SIAM Control,vol. 4, pp. 528-547, 1966. | MR 207423 | Zbl 0145.34202

[11]. H. W. Kuhn and A. W. Tucker, « Nonlinear programming», Proc. of the Second Berkeley Symposium on Mathematic Statistic and Probability, University of California Press, Berkeley, California, 1951, pp. 481-492. | MR 47303 | Zbl 0044.05903

[12]. J. Frehel, « Une méthode de programmation non linéaire», IBM France, Research Laboratory, Paris, étude n° FF2-0061-0, July 1968.