Derivation of nonlinear Gibbs measures from many-body quantum mechanics
[Dérivation de mesures de Gibbs non linéaires comme limites d’un modèle de mécanique quantique à N corps]
Lewin, Mathieu ; Nam, Phan Thành ; Rougerie, Nicolas
Journal de l'École polytechnique - Mathématiques, Tome 2 (2015), p. 65-115 / Harvested from Numdam

Nous prouvons que certaines mesures de Gibbs non linéaires peuvent être obtenues à partir des états de Gibbs grand-canoniques du problème à N corps, dans une limite de champ moyen où la température T diverge et la constante de couplage se comporte comme 1/T. Nous commençons par caractériser les états de Gibbs en présence d’interactions comme minimiseurs d’une fonctionnelle comptant l’énergie libre relativement au cas sans interaction. Nous procédons ensuite à un analogue en dimension infinie d’une analyse semi-classique, en utilisant des propriétés fines de l’entropie relative quantique, le lien entre mesures de de Finetti et symboles supérieurs/inférieurs dans une base d’états cohérents, ainsi que des inégalités de type Berezin-Lieb. Nos résultats couvrent la mesure construite à partir de la fonctionnelle de Schrödinger non linéaire défocalisante sur un intervalle fini, ainsi que le cas d’interactions plus régulières en dimension supérieure.

We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature T diverges and the interaction strength behaves as 1/T. We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum relative entropy, the link between quantum de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb type inequalities. Our results cover the measure built on the defocusing nonlinear Schrödinger functional on a finite interval, as well as smoother interactions in dimensions d2.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/jep.18
Classification:  81V70,  35Q40
Mots clés: Mécanique quantique à N corps, condensation de Bose-Einstein, limite de champ moyen, équation de Schrödinger non linéaire, mesure de Gibbs non linéaire, théorème de de Finetti quantique
@article{JEP_2015__2__65_0,
     author = {Lewin, Mathieu and Nam, Phan Th\`anh and Rougerie, Nicolas},
     title = {Derivation of nonlinear Gibbs measures from many-body quantum mechanics},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     volume = {2},
     year = {2015},
     pages = {65-115},
     doi = {10.5802/jep.18},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEP_2015__2__65_0}
}
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas. Derivation of nonlinear Gibbs measures from many-body quantum mechanics. Journal de l'École polytechnique - Mathématiques, Tome 2 (2015) pp. 65-115. doi : 10.5802/jep.18. http://gdmltest.u-ga.fr/item/JEP_2015__2__65_0/

[1] Albeverio, S.; Høegh-Krohn, R. The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time, J. Functional Analysis, Tome 16 (1974), pp. 39-82 | MR 356761 | Zbl 0279.60095

[2] Ammari, Z. Systèmes hamiltoniens en théorie quantique des champs : dynamique asymptotique et limite classique (2013) (Habilitation à diriger des recherches, Université de Rennes I)

[3] Ammari, Z.; Nier, F. Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Tome 9 (2008), pp. 1503-1574 | Article | MR 2465733 | Zbl 1171.81014

[4] Ammari, Z.; Nier, F. Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys., Tome 50 (2009) no. 4, pp. 042107 | MR 2513969 | Zbl 1214.81089

[5] Ammari, Z.; Nier, F. Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., Tome 95 (2011) no. 6, pp. 585-626 | MR 2802894 | Zbl 1251.81062

[6] Bach, V.; Lieb, E. H.; Solovej, J. P. Generalized Hartree-Fock theory and the Hubbard model, J. Statist. Phys., Tome 76 (1994) no. 1-2, pp. 3-89 | MR 1297873 | Zbl 0839.60095

[7] Benguria, R.; Lieb, E. H. Proof of the stability of highly negative ions in the absence of the Pauli principle, Phys. Rev. Lett., Tome 50 (1983), pp. 1771-1774 | Article

[8] Berezin, F. A. Convex functions of operators, Mat. Sb. (N.S.), Tome 88(130) (1972), pp. 268-276 | MR 300121 | Zbl 0271.47011

[9] Bogachev, V. I. Gaussian measures, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 62 (1998) | MR 1642391 | Zbl 0913.60035

[10] Bourgain, J. Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., Tome 166 (1994) no. 1, pp. 1-26 http://projecteuclid.org/getRecord?id=euclid.cmp/1104271501 | MR 1309539 | Zbl 0822.35126

[11] Bourgain, J. Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., Tome 176 (1996), pp. 421-445 | MR 1374420 | Zbl 0852.35131

[12] Bourgain, J. Invariant measures for the Gross-Piatevskii equation, J. Math. Pures Appl., Tome 76 (1997) no. 8, p. 649-02 http://www.sciencedirect.com/science/article/pii/S0021782497899655 | Article | MR 1470880 | Zbl 0906.35095

[13] Bourgain, J. Invariant measures for NLS in infinite volume, Comm. Math. Phys., Tome 210 (2000) no. 3, pp. 605-620 | Article | MR 1777342 | Zbl 0957.35117

[14] Burq, N.; Thomann, L.; Tzvetkov, N. Long time dynamics for the one dimensional non linear Schrödinger equation, Ann. Inst. Fourier (Grenoble), Tome 63 (2013) no. 6, pp. 2137-2198 http://aif.cedram.org/item?id=AIF_2013__63_6_2137_0 | Numdam | MR 3237443

[15] Burq, N.; Tzvetkov, N. Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., Tome 173 (2008) no. 3, pp. 449-475 | Article | MR 2425133 | Zbl 1156.35062

[16] Carlen, E.; Sims, R.; Ueltschi, D. Trace inequalities and quantum entropy: an introductory course, Entropy and the Quantum, American Mathematical Society, Providence, RI (Contemp. Math.) Tome 529 (2010), pp. 73-140 | MR 2681769 | Zbl 1218.81023

[17] Carlen, E.; Fröhlich, J.; Lebowitz, J. L. Exponential relaxation to equilibrium for a one-dimensional focusing non-linear Schrödinger equation with noise (2014) (arXiv:1409.2327)

[18] Chiribella, G. On quantum estimation, quantum cloning and finite quantum de Finetti theorems, Theory of Quantum Computation, Communication, and Cryptography, Springer (Lect. Notes in Computer Science) Tome 6519 (2011) | MR 2788174

[19] Christandl, M.; König, R.; Mitchison, G.; Renner, R. One-and-a-half quantum de Finetti theorems, Comm. Math. Phys., Tome 273 (2007) no. 2, pp. 473-498 | Article | MR 2318315 | Zbl 1126.81032

[20] Colliander, J.; Oh, T. Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L 2 (𝕋), Duke Math. J., Tome 161 (2012) no. 3, pp. 367-414 | Article | MR 2881226 | Zbl 1260.35199

[21] Combescure, M.; Robert, D. Coherent states and applications in mathematical physics, Springer, Dordrecht, Theoretical and Mathematical Physics (2012), pp. xiv+415 | Article | MR 2952171 | Zbl 1243.81004

[22] De Suzzoni, A.-S. Invariant measure for the cubic wave equation on the unit ball of 3 , Dyn. Partial Differ. Equ., Tome 8 (2011) no. 2, pp. 127-147 | MR 2857361 | Zbl 1237.35118

[23] Dolbeault, J.; Felmer, P.; Loss, M.; Paturel, E. Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems, J. Funct. Anal., Tome 238 (2006) no. 1, pp. 193-220 | MR 2253013 | Zbl 1104.35021

[24] Glimm, J.; Jaffe, A. Quantum physics: a functional integral point of view, Springer-Verlag (1987) | MR 887102 | Zbl 0461.46051

[25] Gottlieb, A. D. Examples of bosonic de Finetti states over finite dimensional Hilbert spaces, J. Statist. Phys., Tome 121 (2005) no. 3-4, pp. 497-509 | Article | MR 2185337 | Zbl 1149.82308

[26] Gottlieb, A. D.; Schumm, T. Quantum noise thermometry for bosonic Josephson junctions in the mean-field regime, Phys. Rev. A, Tome 79 (2009), pp. 063601 http://link.aps.org/doi/10.1103/PhysRevA.79.063601 | Article

[27] Grech, P.; Seiringer, R. The excitation spectrum for weakly interacting bosons in a trap, Comm. Math. Phys., Tome 322 (2013) no. 2, pp. 559-591 | Article | MR 3077925 | Zbl 1273.82007

[28] Guerra, F.; Rosen, L.; Simon, B. The P(φ) 2 Euclidean quantum field theory as classical statistical mechanics. I, II, Ann. of Math. (2), Tome 101 (1975), p. 111-189; ibid. (2) 101 (1975), 191–259 | MR 378670

[29] Hainzl, C.; Lewin, M.; Solovej, J. P. The thermodynamic limit of quantum Coulomb systems. Part II. Applications, Adv. Math., Tome 221 (2009), pp. 488-546 | Article | MR 2508929 | Zbl 1165.81042

[30] Harrow, A. The church of the symmetric subspace (2013) (arXiv:1308.6595)

[31] Hudson, R. L.; Moody, G. R. Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrsch. Verw. Gebiete, Tome 33 (1975/76) no. 4, pp. 343-351 | MR 397421 | Zbl 0304.60001

[32] Juliá-Díaz, B.; Gottlieb, A. D.; Martorell, J.; Polls, A. Quantum and thermal fluctuations in bosonic Josephson junctions, Phys. Rev. A, Tome 88 (2013), pp. 033601 http://link.aps.org/doi/10.1103/PhysRevA.88.033601 | Article

[33] Knowles, A. Limiting dynamics in large quantum systems, Doctoral thesis, ETH Zürich (2009)

[34] Lebowitz, J. L.; Rose, H. A.; Speer, E. R. Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., Tome 50 (1988) no. 3-4, pp. 657-687 | Article | MR 939505 | Zbl 1084.82506

[35] Lewin, M. Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., Tome 260 (2011), pp. 3535-3595 | Article | MR 2781970 | Zbl 1216.81180

[36] Lewin, M.; Nam, P. T.; Rougerie, N. Derivation of Hartree’s theory for generic mean-field Bose systems, Adv. Math., Tome 254 (2014), pp. 570-621 | Article | MR 3161107

[37] Lewin, M.; Nam, P. T.; Rougerie, N. The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases (2014) (to appear in TRAAM, http://arxiv.org/abs/1405.3220)

[38] Lewin, M.; Nam, P. T.; Rougerie, N. Remarks on the quantum de Finetti theorem for bosonic systems, Appl. Math. Res. Express. AMRX, Tome 1 (2015), pp. 48-63 | Article | MR 3335056

[39] Lewin, M.; Sabin, J. A family of monotone quantum relative entropies, Lett. Math. Phys., Tome 104 (2014) no. 6, pp. 691-705 | Article | MR 3200935 | Zbl 1304.47025

[40] Lieb, E. H. The classical limit of quantum spin systems, Comm. Math. Phys., Tome 31 (1973), pp. 327-340 | MR 349181 | Zbl 1125.82305

[41] Lieb, E. H. Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math., Tome 11 (1973), pp. 267-288 | MR 332080 | Zbl 0267.46055

[42] Lieb, E. H.; Ruskai, M. B. A fundamental property of quantum-mechanical entropy, Phys. Rev. Lett., Tome 30 (1973), pp. 434-436 | MR 373508

[43] Lieb, E. H.; Ruskai, M. B. Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys., Tome 14 (1973), pp. 1938-1941 (With an appendix by B. Simon) | MR 345558

[44] Lieb, E. H.; Seiringer, R.; Solovej, J. P.; Yngvason, J. The mathematics of the Bose gas and its condensation, Birkhäuser, Oberwolfach Seminars (2005) | MR 2143817 | Zbl 1104.82012

[45] Lieb, E. H.; Seiringer, R.; Yngvason, J. Justification of c-number substitutions in bosonic Hamiltonians, Phys. Rev. Lett., Tome 94 (2005), pp. 080401 http://link.aps.org/doi/10.1103/PhysRevLett.94.080401 | Article

[46] Lieb, E. H.; Yau, H.-T. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., Tome 112 (1987) no. 1, pp. 147-174 | MR 904142 | Zbl 0641.35065

[47] Lörinczi, J.; Hiroshima, F.; Betz, V. Feynman-Kac-type theorems and Gibbs measures on path space: with applications to rigorous quantum field theory, Walter de Gruyter, de Gruyter Studies in Math. (2011) http://books.google.fr/books?id=5va_PAAACAAJ | MR 2848339 | Zbl 1236.81003

[48] Nelson, E. Construction of quantum fields from Markoff fields, J. Funct. Anal., Tome 12 (1973) no. 1, pp. 97 -112 http://www.sciencedirect.com/science/article/pii/0022123673900918 | Article | MR 343815 | Zbl 0252.60053

[49] Nelson, E. The free Markoff field, J. Funct. Anal., Tome 12 (1973), pp. 211-227 | MR 343816 | Zbl 0273.60079

[50] Oh, T.; Quastel, J. On invariant Gibbs measures conditioned on mass and momentum, J. Math. Soc. Japan, Tome 65 (2013) no. 1, pp. 13-35 http://jlc.jst.go.jp/DN/JST.JSTAGE/jmath/65.13 | MR 3034397 | Zbl 1274.60214

[51] Ohya, M.; Petz, D. Quantum entropy and its use, Springer-Verlag, Berlin, Texts and Monographs in Physics (1993), pp. viii+335 | Article | MR 1230389 | Zbl 0891.94008

[52] Petz, D. Monotonicity of quantum relative entropy revisited, Rev. Math. Phys., Tome 15 (2003) no. 1, pp. 79-91 | Article | MR 1961186 | Zbl 1134.82303

[53] Rougerie, N. Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein (2014) (Lecture notes)

[54] Ruelle, D. Statistical mechanics. Rigorous results, World Scientific & Imperial College Press (1999) | MR 1747792 | Zbl 1016.82500

[55] Simon, B. The P ( φ ) 2 Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J. (1974), pp. xx+392 (Princeton Series in Physics) | MR 489552 | Zbl 1175.81146

[56] Simon, B. Trace ideals and their applications, Cambridge University Press, Cambridge, LMS Lecture Note Series, Tome 35 (1979), pp. viii+134 | MR 541149 | Zbl 0423.47001

[57] Simon, B. The classical limit of quantum partition functions, Comm. Math. Phys., Tome 71 (1980) no. 3, pp. 247-276 | MR 565281 | Zbl 0436.22012

[58] Skorokhod, A. V. Integration in Hilbert space, Springer-Verlag, Ergebnisse der Mathematik und ihrer Grenzgebiete (1974) | MR 466482 | Zbl 0307.28010

[59] Stinespring, W. F. Positive functions on C * -algebras, Proc. Amer. Math. Soc., Tome 6 (1955) no. 2, pp. 211-216 http://www.jstor.org/stable/2032342 | MR 69403 | Zbl 0064.36703

[60] Størmer, E. Symmetric states of infinite tensor products of C * -algebras, J. Funct. Anal., Tome 3 (1969), pp. 48-68 | MR 241992 | Zbl 0167.43403

[61] Summers, S. J. A perspective on constructive quantum field theory (2012) (arXiv:1203.3991)

[62] Thomann, L.; Tzvetkov, N. Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity, Tome 23 (2010) no. 11, pp. 2771 http://stacks.iop.org/0951-7715/23/i=11/a=003 | MR 2727169 | Zbl 1204.35154

[63] Tzvetkov, N. Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble), Tome 58 (2008) no. 7, pp. 2543-2604 http://aif.cedram.org/item?id=AIF_2008__58_7_2543_0 | Numdam | MR 2498359 | Zbl 1171.35116

[64] Velo, G.; Wightman, A. S. Constructive quantum field theory: The 1973 Ettore Majorana international school of mathematical physics, Springer-Verlag, Lect. Notes in Physics (1973) | MR 395513

[65] Wehrl, A. General properties of entropy, Rev. Modern Phys., Tome 50 (1978) no. 2, pp. 221-260 | MR 496300