Étant donné un sous-groupe approximatif définissablement moyennable d’un groupe (local) dans une structure du premier ordre, il y a un sous-groupe type-définissable normalisé par et contenu dans tel que tout ensemble définissable contenant est de mesure positive.
Given a definably amenable approximate subgroup of a (local) group in some first-order structure, there is a type-definable subgroup normalized by and contained in such that every definable superset of has positive measure.
@article{JEP_2015__2__55_0, author = {Massicot, Jean-Cyrille and Wagner, Frank O.}, title = {Approximate subgroups}, journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques}, volume = {2}, year = {2015}, pages = {55-63}, doi = {10.5802/jep.17}, language = {en}, url = {http://dml.mathdoc.fr/item/JEP_2015__2__55_0} }
Massicot, Jean-Cyrille; Wagner, Frank O. Approximate subgroups. Journal de l'École polytechnique - Mathématiques, Tome 2 (2015) pp. 55-63. doi : 10.5802/jep.17. http://gdmltest.u-ga.fr/item/JEP_2015__2__55_0/
[1] The structure of approximate groups, Publ. Math. Inst. Hautes Études Sci., Tome 116 (2012), pp. 115-221 | Article | MR 3090256 | Zbl 1260.20062
[2] Approximate groups [after Hrushovski, and Breuillard, Green, Tao], Séminaire Bourbaki (2013/14), Société Mathématique de France (Astérisque) (Exp. no 1077, to appear)
[3] Definable quotients of locally definable groups, Selecta Math. (N.S.), Tome 18 (2012) no. 4, pp. 885-903 | Article | MR 3000473 | Zbl 1273.03130
[4] Groups without small subgroups, Ann. of Math. (2), Tome 56 (1952), pp. 193-212 | MR 49203 | Zbl 0049.30105
[5] Hilbert’s fifth problem for local groups, Ann. of Math. (2), Tome 172 (2010) no. 2, pp. 1269-1314 | Article | MR 2680491 | Zbl 1219.22004
[6] Stable group theory and approximate subgroups, J. Amer. Math. Soc., Tome 25 (2012) no. 1, pp. 189-243 | Article | MR 2833482 | Zbl 1259.03049
[7] On NIP and invariant measures, J. Eur. Math. Soc. (JEMS), Tome 13 (2011) no. 4, pp. 1005-1061 | Article | MR 2800483 | Zbl 1220.03016
[8]
(Private communication, 2014)[9] On a nonabelian Balog-Szemerédi-type lemma, J. Aust. Math. Soc., Tome 89 (2010) no. 1, pp. 127-132 | Article | MR 2727067 | Zbl 1223.11014
[10] A generalization of a theorem of Gleason, Ann. of Math. (2), Tome 58 (1953), pp. 351-365 | MR 58607 | Zbl 0053.01602