Nous étudions les involutions anti-holomorphes des espaces de modules de -fibrés de Higgs sur une surface de Riemann compacte , où est un groupe de Lie semi-simple complexe. Ces involutions sont définies en fixant des involutions anti-holomorphes à la fois sur et . Nous en analysons le lieu des points fixes dans l’espace de modules et leur relation avec les représentation du groupe fondamental orbifold de muni de l’involution anti-holomorphe. Nous étudions aussi la relation avec les « branes ». Ceci généralise les travaux de Biswas–García-Prada–Hurtubise et Baraglia–Schaposnik.
We study anti-holomorphic involutions of the moduli space of -Higgs bundles over a compact Riemann surface , where is a complex semisimple Lie group. These involutions are defined by fixing anti-holomorphic involutions on both and . We analyze the fixed point locus in the moduli space and their relation with representations of the orbifold fundamental group of equipped with the anti-holomorphic involution. We also study the relation with branes. This generalizes work by Biswas–García-Prada–Hurtubise and Baraglia–Schaposnik.
@article{JEP_2015__2__35_0, author = {Biswas, Indranil and Garc\'\i a-Prada, Oscar}, title = {Anti-holomorphic involutions of the~moduli~spaces of Higgs bundles}, journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques}, volume = {2}, year = {2015}, pages = {35-54}, doi = {10.5802/jep.16}, language = {en}, url = {http://dml.mathdoc.fr/item/JEP_2015__2__35_0} }
Biswas, Indranil; García-Prada, Oscar. Anti-holomorphic involutions of the moduli spaces of Higgs bundles. Journal de l'École polytechnique - Mathématiques, Tome 2 (2015) pp. 35-54. doi : 10.5802/jep.16. http://gdmltest.u-ga.fr/item/JEP_2015__2__35_0/
[1] Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Tome 85 (1957), pp. 181-207 | MR 86359 | Zbl 0078.16002
[2] Classification of the automorphism and isometry groups of Higgs bundle moduli spaces (2014) (arXiv:1411.2228)
[3] Real structures on moduli spaces of Higgs bundles (to appear in Adv. Theo. Math. Phys.) | MR 3248065
[4] Higgs bundles and -branes, Comm. Math. Phys., Tome 331 (2014) no. 3, pp. 1271-1300 | Article
[5] Higgs bundles on compact Kähler manifolds, Ann. Inst. Fourier (Grenoble), Tome 64 (2014), pp. 2527-2562
[6] A Torelli theorem for moduli spaces of principal bundles over a curve, Ann. Inst. Fourier (Grenoble), Tome 62 (2012) no. 1, pp. 87-106 http://aif.cedram.org/item?id=AIF_2012__62_1_87_0 | Numdam | MR 2986266 | Zbl 1268.14010
[7] Yang-Mills equation for stable Higgs sheaves, Internat. J. Math., Tome 20 (2009) no. 5, pp. 541-556 | Article | MR 2526306 | Zbl 1169.53017
[8] Relative Hitchin-Kobayashi correspondences for principal pairs, Q. J. Math., Tome 54 (2003) no. 2, pp. 171-208 | Article | MR 1989871 | Zbl 1064.53056
[9] Les groupes réels simples, finis et continus, Ann. Sci. École Norm. Sup., Tome 31 (1914), pp. 263-355
[10] Flat -bundles with canonical metrics, J. Differential Geom., Tome 28 (1988) no. 3, pp. 361-382 http://projecteuclid.org/euclid.jdg/1214442469 | MR 965220 | Zbl 0676.58007
[11] Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3), Tome 55 (1987) no. 1, pp. 127-131 | Article | MR 887285 | Zbl 0634.53046
[12] Involutions of the moduli space of -Higgs bundles and real forms, Vector bundles and low codimensional subvarieties: state of the art and recent developments, Dept. Math., Seconda Univ. Napoli, Caserta (Quad. Mat.) Tome 21 (2007), pp. 219-238 | MR 2544088
[13] Higgs bundles and surface group representations, Moduli spaces and vector bundles, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 359 (2009), pp. 265-310 | MR 2537072 | Zbl 1187.14037
[14] The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations (2009) (arXiv:0909.4487)
[15] Involutions of Higgs bundle moduli spaces (in preparation)
[16] The symplectic nature of fundamental groups of surfaces, Advances in Math., Tome 54 (1984) no. 2, pp. 200-225 | Article | MR 762512 | Zbl 0574.32032
[17] The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), Tome 55 (1987) no. 1, pp. 59-126 | Article | MR 887284 | Zbl 0634.53045
[18] Higgs bundles and characteristic classes (2013) (arXiv:1308.4603)
[19] Hitchin’s equations on a nonorientable manifold (2012) (arXiv:1211.0746)
[20] Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys., Tome 1 (2007) no. 1, pp. 1-236 | Article | MR 2306566 | Zbl 1128.22013
[21] Differential geometry of complex vector bundles, Princeton University Press, Princeton, NJ, Publications of the Mathematical Society of Japan, Tome 15 (1987), pp. xii+305 | MR 909698 | Zbl 0708.53002
[22] Sur les groupes de Lie compacts non connexes, Comment. Math. Helv., Tome 31 (1956), pp. 41-89 | MR 94408 | Zbl 0075.01602
[23] Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., Tome 1 (1988) no. 4, pp. 867-918 | Article | MR 944577 | Zbl 0669.58008
[24] Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci. (1992) no. 75, pp. 5-95 | Numdam | MR 1179076 | Zbl 0814.32003
[25] Moduli of representations of the fundamental group of a smooth projective variety. II, Publ. Math. Inst. Hautes Études Sci. (1994) no. 80, pp. 5-79 | Numdam | MR 1320603 | Zbl 0891.14006