Potentially semi-stable deformation rings for discrete series extended types
[Anneaux de déformations potentiellement semi-stables pour les types étendus de la série discrète]
Rozensztajn, Sandra
Journal de l'École polytechnique - Mathématiques, Tome 2 (2015), p. 179-211 / Harvested from Numdam

Nous définissons des anneaux de déformations pour les déformations potentiellement semi-stables ayant un type étendu de la série discrète fixé en dimension 2. Dans le cas des représentations du groupe de Galois de p , nous prouvons un analogue de la conjecture de Breuil-Mézard pour ces anneaux. Nous donnons comme application de ceci des résultats sur l’existence de congruences modulo p pour les formes nouvelles dans S k (Γ 0 (p)).

We define deformation rings for potentially semi-stable deformations of fixed discrete series extended type in dimension 2. In the case of representations of the Galois group of p , we prove an analogue of the Breuil-Mézard conjecture for these rings. As an application, we give some results on the existence of congruences modulo p for newforms in S k (Γ 0 (p)).

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/jep.22
Classification:  11F80,  11F33
Mots clés: Représentations galoisiennes, anneaux de déformations, conjecture de Breuil-Mézard
@article{JEP_2015__2__179_0,
     author = {Rozensztajn, Sandra},
     title = {Potentially semi-stable deformation rings for discrete series extended types},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     volume = {2},
     year = {2015},
     pages = {179-211},
     doi = {10.5802/jep.22},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEP_2015__2__179_0}
}
Rozensztajn, Sandra. Potentially semi-stable deformation rings for discrete series extended types. Journal de l'École polytechnique - Mathématiques, Tome 2 (2015) pp. 179-211. doi : 10.5802/jep.22. http://gdmltest.u-ga.fr/item/JEP_2015__2__179_0/

[AB07] Ahlgren, S.; Barcau, M. Congruences for modular forms of weights two and four, J. Number Theory, Tome 126 (2007) no. 2, pp. 193-199 | Article | MR 2354927 | Zbl 1144.11036

[All14] Allen, P. Deformations of polarized automorphic Galois representations and adjoint Selmer groups (2014) (arXiv:1411.7661)

[BC08] Berger, L.; Colmez, P. Familles de représentations de de Rham et monodromie p-adique, Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (φ,Γ)-modules, Société Mathématique de France, Paris (Astérisque) Tome 319 (2008), pp. 303-337 | MR 2482309 | Zbl 1168.11020

[BCDT01] Breuil, Ch.; Conrad, B.; Diamond, F.; Taylor, R. On the modularity of elliptic curves over : wild 3-adic exercises, J. Amer. Math. Soc., Tome 14 (2001) no. 4, pp. 843-939 | Article | MR 1839918 | Zbl 0982.11033

[BD14] Breuil, Ch.; Diamond, F. Formes modulaires de Hilbert modulo p et valeurs d’extensions entre caractères galoisiens, Ann. Sci. École Norm. Sup. (4), Tome 47 (2014) no. 5, pp. 905-974 | MR 3294620

[BH06] Bushnell, C. J.; Henniart, G. The local Langlands conjecture for GL (2), Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften, Tome 335 (2006), pp. xii+347 | Article | MR 2234120 | Zbl 1100.11041

[BM02] Breuil, Ch.; Mézard, A. Multiplicités modulaires et représentations de GL 2 ( p ) et de Gal ( ¯ p / p ) en =p, Duke Math. J., Tome 115 (2002) no. 2, pp. 205-310 (with an appendix by G. Henniart) | Article | MR 1944572 | Zbl 1042.11030

[BP11] Barcau, M.; Paşol, V. mod p congruences for cusp forms of weight four for Γ 0 (pN), Int. J. Number Theory, Tome 7 (2011) no. 2, pp. 341-350 | Article | MR 2782662 | Zbl 1273.11076

[CDT99] Conrad, B.; Diamond, F.; Taylor, R. Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc., Tome 12 (1999) no. 2, pp. 521-567 | Article | MR 1639612 | Zbl 0923.11085

[CS04] Calegari, F.; Stein, W. A. Conjectures about discriminants of Hecke algebras of prime level, Algorithmic number theory, Springer, Berlin (Lecture Notes in Comput. Sci.) Tome 3076 (2004), pp. 140-152 | Article | MR 2137350 | Zbl 1125.11320

[DDT97] Darmon, H.; Diamond, F.; Taylor, R. Fermat’s last theorem, Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA (1997), pp. 2-140 | MR 1605752 | Zbl 0877.11035

[EG14] Emerton, M.; Gee, T. A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, Tome 13 (2014) no. 1, pp. 183-223 | Article | MR 3134019

[Fon94a] Fontaine, J.-M. Représentations -adiques potentiellement semi-stables, Périodes p-adiques (Bures-sur-Yvette, 1988), Société Mathématique de France, Paris (Astérisque) Tome 223 (1994), pp. 321-347 | MR 1293977 | Zbl 0873.14020

[Fon94b] Fontaine, J.-M. Représentations p-adiques semi-stables, Périodes p-adiques (Bures-sur-Yvette, 1988), Société Mathématique de France, Paris (Astérisque) Tome 223 (1994), pp. 113-184 (with an appendix by P. Colmez) | MR 1293977 | Zbl 0865.14009

[Gee11] Gee, T. Automorphic lifts of prescribed types, Math. Ann., Tome 350 (2011) no. 1, pp. 107-144 | Article | MR 2785764 | Zbl 1276.11085

[Gér78] Gérardin, P. Facteurs locaux des algèbres simples de rang 4. I, Reductive groups and automorphic forms, I (Paris, 1976/1977), Univ. Paris VII, Paris (Publ. Math. Univ. Paris VII) Tome 1 (1978), pp. 37-77

[GG15] Gee, T.; Geraghty, G. The Breuil-Mézard conjecture for quaternion algebras, Ann. Inst. Fourier (Grenoble), Tome 65 (2015) no. 1, pp. 1557-1575 | MR 3292675

[GK14] Gee, T.; Kisin, M. The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi, Tome 2 (2014), pp. e1, 56 | Article | MR 2471916 | Zbl 1251.11044

[GM09] Ghate, E.; Mézard, A. Filtered modules with coefficients, Trans. Amer. Math. Soc., Tome 361 (2009) no. 5, pp. 2243-2261 | Article | MR 2822861 | Zbl 1282.11042

[GS11] Gee, T.; Savitt, D. Serre weights for quaternion algebras, Compositio Math., Tome 147 (2011) no. 4, pp. 1059-1086 | Article

[HT01] Harris, M.; Taylor, R. The geometry and cohomology of some simple Shimura varieties, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 151 (2001), pp. viii+276 (with an appendix by V. G. Berkovich) | MR 1876802 | Zbl 1036.11027

[HT15] Hu, Y.; Tan, F. The Breuil-Mézard conjecture for non-scalar split residual representations (2015) (to appear in Ann. Scient. de l’E.N.S. 48, no. 6, arXiv:1309.1658)

[Ima11] Imai, N. Filtered modules corresponding to potentially semi-stable representations, J. Number Theory, Tome 131 (2011) no. 2, pp. 239-259 | Article | MR 2736854 | Zbl 1217.11112

[Kha01] Khare, C. A local analysis of congruences in the (p,p) case. II, Invent. Math., Tome 143 (2001) no. 1, pp. 129-155 | Article | MR 1802794 | Zbl 0971.11028

[Kis08] Kisin, M. Potentially semi-stable deformation rings, J. Amer. Math. Soc., Tome 21 (2008) no. 2, pp. 513-546 | Article | MR 2373358 | Zbl 1205.11060

[Kis09a] Kisin, M. The Fontaine-Mazur conjecture for GL 2 , J. Amer. Math. Soc., Tome 22 (2009) no. 3, pp. 641-690 | Article | MR 2505297 | Zbl 1251.11045

[Kis09b] Kisin, M. Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Tome 170 (2009) no. 3, pp. 1085-1180 | Article | MR 2600871 | Zbl 1201.14034

[Mat89] Matsumura, H. Commutative ring theory, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 8 (1989), pp. xiv+320 | MR 1011461 | Zbl 0666.13002

[Paš15] Paškūnas, V. On the Breuil-Mézard conjecture, Duke Math. J., Tome 164 (2015) no. 2, pp. 297-359 | Article | MR 3306557

[Sai09] Saito, T. Hilbert modular forms and p-adic Hodge theory, Compositio Math., Tome 145 (2009) no. 5, pp. 1081-1113 | Article | MR 2551990 | Zbl 1259.11060

[Tay06] Taylor, R. On the meromorphic continuation of degree two L-functions, Doc. Math. (2006), pp. 729-779 (Extra Vol.) | MR 2290604 | Zbl 1138.11051

[Tay89] Taylor, R. On Galois representations associated to Hilbert modular forms, Invent. Math., Tome 98 (1989) no. 2, pp. 265-280 | Article | MR 1016264 | Zbl 0705.11031

[Tok15] Tokimoto, K. On the reduction modulo p of representations of a quaternion division algebra over a p-adic field, J. Number Theory, Tome 150 (2015), pp. 136-167 | Article | MR 3304611