Minimal rational curves on wonderful group compactifications
[Courbes rationnelles minimales sur les compactifications magnifiques des groupes]
Brion, Michel ; Fu, Baohua
Journal de l'École polytechnique - Mathématiques, Tome 2 (2015), p. 153-170 / Harvested from Numdam

Soient G un groupe algébrique simple et X sa compactification magnifique. Nous montrons que X possède une unique famille de courbes rationnelles minimales, et nous décrivons explicitement la sous-famille formée des courbes passant par un point général. Nous en déduisons une propriété de rigidité de X, lorsque G n’est pas de type A 1 ou C.

Consider a simple algebraic group G of adjoint type, and its wonderful compactification X. We show that X admits a unique family of minimal rational curves, and we explicitly describe the subfamily consisting of curves through a general point. As an application, we show that X has the target rigidity property when G is not of type A 1 or C.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/jep.20
Classification:  14L30,  14M27,  20G20
Mots clés: Courbes rationnelles minimales, compactifications magnifiques
@article{JEP_2015__2__153_0,
     author = {Brion, Michel and Fu, Baohua},
     title = {Minimal rational curves on wonderful~group~compactifications},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     volume = {2},
     year = {2015},
     pages = {153-170},
     doi = {10.5802/jep.20},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEP_2015__2__153_0}
}
Brion, Michel; Fu, Baohua. Minimal rational curves on wonderful group compactifications. Journal de l'École polytechnique - Mathématiques, Tome 2 (2015) pp. 153-170. doi : 10.5802/jep.20. http://gdmltest.u-ga.fr/item/JEP_2015__2__153_0/

[BGMR11] Bravi, P.; Gandini, J.; Maffei, A.; Ruzzi, A. Normality and non-normality of group compactifications in simple projective spaces, Ann. Inst. Fourier (Grenoble), Tome 61 (2011) no. 6, p. 2435-2461 (2012) | Article | Numdam | MR 2976317 | Zbl 1300.14054

[BK05] Brion, M.; Kumar, S. Frobenius splitting methods in geometry and representation theory, Birkhäuser Boston, Inc., Boston, MA, Progress in Math., Tome 231 (2005), pp. x+250 | MR 2107324 | Zbl 1072.14066

[Bou07] Bourbaki, N. Éléments de mathématique. Groupes et algèbres de Lie, Springer, Berlin (2006–2007), pp. 138 | Article | Zbl 1181.17001

[Bri07] Brion, M. The total coordinate ring of a wonderful variety, J. Algebra, Tome 313 (2007) no. 1, pp. 61-99 | Article | MR 2326138 | Zbl 1123.14024

[CFH14] Chen, Y.; Fu, B.; Hwang, J.-M. Minimal rational curves on complete toric manifolds and applications, Proc. Edinburgh Math. Soc. (2), Tome 57 (2014) no. 1, pp. 111-123 | Article | MR 3165015 | Zbl 1296.14039

[CP11] Chaput, P. E.; Perrin, N. On the quantum cohomology of adjoint varieties, Proc. London Math. Soc. (3), Tome 103 (2011) no. 2, pp. 294-330 | Article | MR 2821244 | Zbl 1267.14065

[DCP83] De Concini, C.; Procesi, C. Complete symmetric varieties, Invariant theory (Montecatini, 1982), Springer, Berlin (Lect. Notes in Math.) Tome 996 (1983), pp. 1-44 | Article | Zbl 0581.14041

[Dem77] Demazure, M. Automorphismes et déformations des variétés de Borel, Invent. Math., Tome 39 (1977) no. 2, pp. 179-186 | MR 435092 | Zbl 0406.14030

[FH12] Fu, B.; Hwang, J.-M. Classification of non-degenerate projective varieties with non-zero prolongation and application to target rigidity, Invent. Math., Tome 189 (2012) no. 2, pp. 457-513 | Article | MR 2947549 | Zbl 1260.14050

[HM02] Hwang, Jun-Muk; Mok, Ngaiming Deformation rigidity of the rational homogeneous space associated to a long simple root, Ann. Sci. École Norm. Sup. (4), Tome 35 (2002) no. 2, pp. 173-184 | Article | Numdam | MR 1914930 | Zbl 1008.32012

[HM04a] Hwang, Jun-Muk; Mok, Ngaiming Birationality of the tangent map for minimal rational curves, Asian J. Math., Tome 8 (2004) no. 1, pp. 51-63 | Article | MR 2128297 | Zbl 1072.14015

[HM04b] Hwang, Jun-Muk; Mok, Ngaiming Deformation rigidity of the 20-dimensional F 4 -homogeneous space associated to a short root, Algebraic transformation groups and algebraic varieties, Springer, Berlin (Encyclopaedia Math. Sci.) Tome 132 (2004), pp. 37-58 | Article | MR 2090669 | Zbl 1071.22012

[HM05] Hwang, Jun-Muk; Mok, Ngaiming Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation, Invent. Math., Tome 160 (2005) no. 3, pp. 591-645 | Article | MR 2178704 | Zbl 1071.32022

[Hor69] Horrocks, G. Fixed point schemes of additive group actions, Topology, Tome 8 (1969), pp. 233-242 | MR 244261 | Zbl 0159.22401

[Hwa01] Hwang, J.-M. Geometry of minimal rational curves on Fano manifolds, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), Abdus Salam Int. Cent. Theoret. Phys., Trieste (ICTP Lect. Notes) Tome 6 (2001), pp. 335-393 | MR 1919462 | Zbl 1086.14506

[Kan99] Kannan, Senthamarai S. Remarks on the wonderful compactification of semisimple algebraic groups, Proc. Indian Acad. Sci. Math. Sci., Tome 109 (1999) no. 3, pp. 241-256 | Article | MR 1709332 | Zbl 0946.14024

[Keb02] Kebekus, S. Families of singular rational curves, J. Algebraic Geom., Tome 11 (2002) no. 2, pp. 245-256 | Article | MR 1874114 | Zbl 1054.14035

[Kol96] Kollár, J. Rational curves on algebraic varieties, Springer-Verlag, Berlin, Ergeb. Math. Grenzgeb. (3), Tome 32 (1996), pp. viii+320 | Article | MR 1440180 | Zbl 0877.14012

[LM03] Landsberg, J. M.; Manivel, L. On the projective geometry of rational homogeneous varieties, Comment. Math. Helv., Tome 78 (2003) no. 1, pp. 65-100 | Article | MR 1966752 | Zbl 1048.14032

[Lun73] Luna, D. Slices étales, Sur les groupes algébriques, Société Mathématique de France, Paris (Mém. Soc. Math. France (N.S.)) Tome 33 (1973), pp. 81-105 | Numdam | MR 342523 | Zbl 0286.14014

[Tim03] Timashëv, D. A. Equivariant compactifications of reductive groups, Mat. Sb., Tome 194 (2003) no. 4, pp. 119-146 | Article | MR 1992080 | Zbl 1074.14043

[Vai84] Vainsencher, I. Complete collineations and blowing up determinantal ideals, Math. Ann., Tome 267 (1984) no. 3, pp. 417-432 | Article | MR 738261 | Zbl 0544.14033