Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II
[Limite quasineutre du système d’Euler-Poisson pour les ions dans un domaine à bord II]
Gérard-Varet, David ; Han-Kwan, Daniel ; Rousset, Frédéric
Journal de l'École polytechnique - Mathématiques, Tome 1 (2014), p. 343-386 / Harvested from Numdam

Dans cet article, nous étudions la limite quasineutre du système d’Euler-Poisson pour les ions dans un domaine à bord. Il s’agit de la suite de notre travail précédent [5], qui était consacré aux cas de conditions limites de type non-pénétration ou sortantes subsoniques. Nous nous focalisons ici sur le cas des vitesses sortantes supersoniques. La structure des couches limites ainsi que le mécanisme de stabilisation sont différents.

In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [5], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/jep.13
Classification:  76N20,  76X05
Mots clés: Équations d’Euler-Poisson isothermes, limite quasineutre, couches limites, conditions aux limites supersoniques
@article{JEP_2014__1__343_0,
     author = {G\'erard-Varet, David and Han-Kwan, Daniel and Rousset, Fr\'ed\'eric},
     title = {Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     volume = {1},
     year = {2014},
     pages = {343-386},
     doi = {10.5802/jep.13},
     zbl = {06275539},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEP_2014__1__343_0}
}
Gérard-Varet, David; Han-Kwan, Daniel; Rousset, Frédéric. Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II. Journal de l'École polytechnique - Mathématiques, Tome 1 (2014) pp. 343-386. doi : 10.5802/jep.13. http://gdmltest.u-ga.fr/item/JEP_2014__1__343_0/

[1] Ambroso, A. Stability for solutions of a stationary Euler-Poisson problem, Math. Models Methods Appl. Sci., Tome 16 (2006) no. 11, pp. 1817-1837 | Article | MR 2271600 | Zbl 1116.35051

[2] Ambroso, A.; Méhats, F.; Raviart, P. A. On singular perturbation problems for the nonlinear Poisson equation, Asymptot. Anal., Tome 25 (2001) no. 1, pp. 39-91 | MR 1814989 | Zbl 0986.34051

[3] Benzoni-Gavage, S.; Serre, D. Multidimensional hyperbolic partial differential equations, The Clarendon Press Oxford University Press, Oxford, Oxford Mathematical Monographs (2007), pp. xxvi+508 (First-order systems and applications) | MR 2284507 | Zbl 1113.35001

[4] Cordier, S.; Grenier, E. Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, Tome 25 (2000) no. 5-6, pp. 1099-1113 | Article | MR 1759803 | Zbl 0978.82086

[5] Gérard-Varet, D.; Han-Kwan, D.; Rousset, F. Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries, Indiana Univ. Math. J., Tome 62 (2013), pp. 359-402 | MR 3158514

[6] Goodman, J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Anal., Tome 95 (1986) no. 4, pp. 325-344 | Article | MR 853782 | Zbl 0631.35058

[7] Lieberman, M.; Lichtenberg, A. Principles of plasma discharges and materials processing, Cambridge University Press (1994)

[8] Nishibata, S.; Ohnawa, M.; Suzuki, M. Asymptotic stability of boundary layers to the Euler-Poisson equations arising in plasma physics, SIAM J. Math. Anal., Tome 44 (2012) no. 2, pp. 761-790 | Article | MR 2914249 | Zbl 1257.35038

[9] Riemann, K-U The Bohm criterion and sheath formation, J. Phys. D: Applied Physics, Tome 24 (1991) no. 4, pp. 493

[10] Slemrod, M.; Sternberg, N. Quasi-neutral limit for Euler-Poisson system, J. Nonlinear Sci., Tome 11 (2001) no. 3, pp. 193-209 | Article | MR 1852940 | Zbl 0997.34033

[11] Suzuki, M. Asymptotic stability of stationnary solutions to the Euler-Poisson equations arising in plasma physics, Kinet. and Relat. Mod., Tome 4 (2011) no. 2, pp. 569-588 | MR 2786399 | Zbl 1227.35073