Syzygies and logarithmic vector fields along plane curves
[Syzygies et champs de vecteurs logarithmiques le long de courbes planes]
Dimca, Alexandru ; Sernesi, Edoardo
Journal de l'École polytechnique - Mathématiques, Tome 1 (2014), p. 247-267 / Harvested from Numdam

Nous étudions les relations entre les syzygies de l’idéal jacobien associé à l’équation définissant une courbe plane C et la stabilité du faisceau des champs de vecteurs logarithmiques le long de C, la liberté du diviseur C et les propriétés de Torelli de C (au sens de Dolgachev-Kapranov). Nous montrons en particulier que les courbes ayant un petit nombre de points doubles et de cusps ont la propriété de Torelli.

We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve C and the stability of the sheaf of logarithmic vector fields along C, the freeness of the divisor C and the Torelli properties of C (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/jep.10
Classification:  14C34,  14H50,  32S05
Mots clés: Syzygie, courbe plane, champ de vecteurs logarithmique, fibré stable, diviseur libre, propriété de Torelli
@article{JEP_2014__1__247_0,
     author = {Dimca, Alexandru and Sernesi, Edoardo},
     title = {Syzygies and logarithmic vector fields along plane curves},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     volume = {1},
     year = {2014},
     pages = {247-267},
     doi = {10.5802/jep.10},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEP_2014__1__247_0}
}
Dimca, Alexandru; Sernesi, Edoardo. Syzygies and logarithmic vector fields along plane curves. Journal de l'École polytechnique - Mathématiques, Tome 1 (2014) pp. 247-267. doi : 10.5802/jep.10. http://gdmltest.u-ga.fr/item/JEP_2014__1__247_0/

[1] Angelini, E. Logarithmic bundles of hypersurface arrangements in n (2013) (arXiv:1304.5709) | MR 3240995

[2] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J. Geometry of algebraic curves. Vol. I, Springer-Verlag, New York, Grundlehren der Mathematischen Wissenschaften, Tome 267 (1985), pp. xvi+386 | Article | MR 770932 | Zbl 0559.14017

[3] Arnold, V. I.; Guseĭn-Zade, S. M.; Varchenko, A. N. Singularities of differentiable maps. Vol. II, Birkhäuser Boston, Inc., Boston, MA, Monographs in Mathematics, Tome 83 (1988), pp. viii+492 | Article | MR 966191 | Zbl 0659.58002

[4] Buchweitz, R.-O.; Conca, A. New free divisors from old, J. Commut. Algebra, Tome 5 (2013) no. 1, pp. 17-47 (arXiv:1211.4327) | MR 3084120 | Zbl 1280.32016

[5] Dimca, A. Topics on real and complex singularities, Friedr. Vieweg & Sohn, Braunschweig, Advanced Lectures in Mathematics (1987), pp. xviii+242 | Article | MR 1013785 | Zbl 0628.14001

[6] Dimca, A. Syzygies of Jacobian ideals and defects of linear systems, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Tome 56(104) (2013) no. 2, pp. 191-203 | MR 3098166 | Zbl pre06289661

[7] Dimca, A.; Saito, M. Graded Koszul cohomology and spectrum of certain homogeneous polynomials (2012) (arXiv:1212.1081)

[8] Dimca, A.; Saito, M. Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points (2014) (arXiv:1403.4563)

[9] Dimca, A.; Saito, M. Some remarks on limit mixed Hodge structures and spectrum, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., Tome 22 (2014) no. 2, pp. 69-78 | MR 3195696

[10] Dimca, A.; Sticlaru, G. Koszul complexes and pole order filtrations, Proc. Edinburgh Math. Soc. (2) (to appear, arXiv:1108.3976)

[11] Dimca, A.; Sticlaru, G. Chebyshev curves, free resolutions and rational curve arrangements, Math. Proc. Cambridge Philos. Soc., Tome 153 (2012) no. 3, pp. 385-397 | Article | MR 2990622 | Zbl 1253.14032

[12] Dimca, A.; Sticlaru, G. Syzygies of Jacobian ideals and weighted homogeneous singularities (2014) (arXiv:1407.0168)

[13] Dolgachev, I.; Kapranov, M. Arrangements of hyperplanes and vector bundles on n , Duke Math. J., Tome 71 (1993) no. 3, pp. 633-664 | Article | MR 1240599 | Zbl 0804.14007

[14] Granger, M.; Mond, D.; Nieto-Reyes, A.; Schulze, M. Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble), Tome 59 (2009) no. 2, pp. 811-850 http://aif.cedram.org/item?id=AIF_2009__59_2_811_0 | Numdam | MR 2521436 | Zbl 1163.32014

[15] Hartshorne, R. Algebraic Geometry, Springer-Verlag, Graduate Texts in Math., Tome 52 (1977) | MR 463157 | Zbl 0531.14001

[16] Hulek, K. Stable rank-2 vector bundles on 2 with c 1 odd, Math. Ann., Tome 242 (1979) no. 3, pp. 241-266 | Article | MR 545217 | Zbl 0407.32013

[17] Kollár, J. Singularities of pairs, Algebraic geometry—Santa Cruz 1995, American Mathematical Society, Providence, RI (Proc. Sympos. Pure Math.) Tome 62 (1997), pp. 221-287 | MR 1492525 | Zbl 0905.14002

[18] Narváez Macarro, L. Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors, Singularities I, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 474 (2008), pp. 245-269 | Article | MR 2454351 | Zbl 1166.32006

[19] Okonek, C.; Schneider, M.; Spindler, H. Vector bundles on complex projective spaces, Birkhäuser, Boston, Mass., Progress in Math., Tome 3 (1980), pp. vii+389 | MR 561910 | Zbl 0438.32016

[20] Orlik, P.; Terao, H. Arrangements of hyperplanes, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften, Tome 300 (1992), pp. xviii+325 | Article | MR 1217488 | Zbl 0757.55001

[21] Saito, K. Einfach-elliptische Singularitäten, Invent. Math., Tome 23 (1974), pp. 289-325 | MR 354669 | Zbl 0296.14019

[22] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 27 (1980) no. 2, pp. 265-291 | MR 586450 | Zbl 0496.32007

[23] Sernesi, E. Deformations of algebraic schemes, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften, Tome 334 (2006), pp. xii+339 | MR 2247603 | Zbl 1102.14001

[24] Sernesi, E. The local cohomology of the Jacobian ring, Doc. Math., Tome 19 (2014), pp. 541-565 | MR 3218781

[25] Simis, A.; Tohăneanu, Ş. O. Homology of homogeneous divisors, Israel J. Math., Tome 200 (2014) no. 1, pp. 449-487 (arXiv:1207.5862) | Article | MR 3219587 | Zbl pre06308431

[26] Sticlaru, G. Free divisors versus stability and coincidence thresholds (2014) (arXiv:1401.1843)

[27] Ueda, K.; Yoshinaga, M. Logarithmic vector fields along smooth divisors in projective spaces, Hokkaido Math. J., Tome 38 (2009) no. 3, pp. 409-415 | Article | MR 2548229 | Zbl 1180.14012

[28] Vallès, J. Nombre maximal d’hyperplans instables pour un fibré de Steiner, Math. Z., Tome 233 (2000) no. 3, pp. 507-514 | Article | MR 1750934 | Zbl 0952.14011

[29] Wahl, J. M. Deformations of plane curves with nodes and cusps, Amer. J. Math., Tome 96 (1974), pp. 529-577 | MR 387287 | Zbl 0299.14008

[30] Yoshinaga, M. Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math. (6), Tome 23 (2014) no. 2, pp. 483-512 (arXiv:1212.3523) | Article | Numdam | MR 3205600 | Zbl pre06297899