Nous étudions les éclatements d’espaces de configuration. Ces espaces ont une structure de variété que nous appelons d’Orlik-Solomon ; elle permet de calculer la cohomologie d’intersection de certaines connexions plates avec singularités logarithmiques à l’aide de complexes de formes logarithmiques du type d’Aomoto. En utilisant cette construction, nous donnons une réalisation géométrique de la résolution de Bernstein–Gelfand–Gelfand pour comme un complexe d’Aomoto.
We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
@article{JEP_2014__1__225_0, author = {Falk, Michael and Schechtman, Vadim and Varchenko, Alexander}, title = {BGG resolutions via configuration spaces}, journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques}, volume = {1}, year = {2014}, pages = {225-245}, doi = {10.5802/jep.9}, language = {en}, url = {http://dml.mathdoc.fr/item/JEP_2014__1__225_0} }
Falk, Michael; Schechtman, Vadim; Varchenko, Alexander. BGG resolutions via configuration spaces. Journal de l'École polytechnique - Mathématiques, Tome 1 (2014) pp. 225-245. doi : 10.5802/jep.9. http://gdmltest.u-ga.fr/item/JEP_2014__1__225_0/
[AV12] Intersection cohomology of a rank one local system on the complement of a hyperplane-like divisor, Configuration spaces. Geometry, combinatorics and topology, Edizioni della Normale, Pisa (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series) Tome 14 (2012), pp. 49-53 (arXiv:1106.5732) | MR 3203591 | Zbl 1274.14025
[BB81] Localisation de -modules, C. R. Acad. Sci. Paris Sér. I Math., Tome 292 (1981) no. 1, pp. 15-18 | MR 610137 | Zbl 0476.14019
[BFS98] Factorizable sheaves and quantum groups, Springer-Verlag, Berlin, Lect. Notes in Math., Tome 1691 (1998), pp. x+287 | MR 1641131 | Zbl 0938.17016
[BG92] Infinitesimal structure of moduli spaces of -bundles, Internat. Math. Res. Notices (1992) no. 4, pp. 63-74 | Article | MR 1159447 | Zbl 0763.32011
[BGG75] Differential operators on the base affine space and a study of -modules, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York (1975), pp. 21-64 | MR 578996 | Zbl 0338.58019
[DCP95] Wonderful models of subspace arrangements, Selecta Math. (N.S.), Tome 1 (1995) no. 3, pp. 459-494 | Article | MR 1366622 | Zbl 0842.14038
[Dim92] Singularities and topology of hypersurfaces, Springer-Verlag, New York, Universitext (1992), pp. xvi+263 | Article | MR 1194180 | Zbl 0753.57001
[ESV92] Cohomology of local systems on the complement of hyperplanes, Invent. Math., Tome 109 (1992) no. 3, pp. 557-561 (Erratum: Ibid. 112 (1993), p. 447) | Article | MR 1176205 | Zbl 0788.32005
[Kem78] The Grothendieck-Cousin complex of an induced representation, Adv. in Math., Tome 29 (1978) no. 3, pp. 310-396 | Article | MR 509802 | Zbl 0393.20027
[KS97] Factorizable -modules, Math. Res. Lett., Tome 4 (1997) no. 2-3, pp. 239-257 | Article | MR 1453057 | Zbl 0886.17012
[KV06] Quiver -modules and homology of local systems over an arrangement of hyperplanes, IMRP Int. Math. Res. Pap. (2006) (Art. ID 69590) | MR 2282180 | Zbl 1116.32005
[OT92] Arrangements of hyperplanes, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften, Tome 300 (1992), pp. xviii+325 | Article | MR 1217488 | Zbl 0757.55001
[STV95] Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra, Tome 100 (1995) no. 1-3, pp. 93-102 | Article | MR 1344845 | Zbl 0849.32025
[SV91] Arrangements of hyperplanes and Lie algebra homology, Invent. Math., Tome 106 (1991) no. 1, pp. 139-194 | Article | MR 1123378 | Zbl 0754.17024
[Var95] Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, World Scientific Publishing Co., Inc., River Edge, NJ, Advanced Series in Mathematical Physics, Tome 21 (1995), pp. x+371 | Article | MR 1384760 | Zbl 0951.33001