The tame automorphism group of an affine quadric threefold acting on a square complex
[Action du groupe modéré d’une quadrique affine de dimension 3 sur un complexe carré]
Bisi, Cinzia ; Furter, Jean-Philippe ; Lamy, Stéphane
Journal de l'École polytechnique - Mathématiques, Tome 1 (2014), p. 161-223 / Harvested from Numdam

Nous étudions le groupe Tame(SL 2 ) des automorphismes modérés d’une quadrique affine lisse de dimension 3, que l’on peut choisir comme étant la variété sous-jacente à SL 2 (). Nous construisons un complexe carré sur lequel ce groupe agit naturellement de façon cocompacte, et nous montrons que ce complexe est CAT(0) et hyperbolique. Nous proposons ensuite deux applications de cette construction : nous montrons que tout sous-groupe fini de Tame(SL 2 ) est linéarisable, et que Tame(SL 2 ) satisfait l’alternative de Tits.

We study the group Tame(SL 2 ) of tame automorphisms of a smooth affine 3-dimensional quadric, which we can view as the underlying variety of SL 2 (). We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is CAT(0) and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in Tame(SL 2 ) is linearizable, and that Tame(SL 2 ) satisfies the Tits alternative.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/jep.8
Classification:  14J50,  14R20,  20F65
Mots clés: Groupe d’automorphismes, quadrique affine, complexe cubique, alternative de Tits
@article{JEP_2014__1__161_0,
     author = {Bisi, Cinzia and Furter, Jean-Philippe and Lamy, St\'ephane},
     title = {The tame automorphism group of an affine quadric threefold acting on a square complex},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     volume = {1},
     year = {2014},
     pages = {161-223},
     doi = {10.5802/jep.8},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEP_2014__1__161_0}
}
Bisi, Cinzia; Furter, Jean-Philippe; Lamy, Stéphane. The tame automorphism group of an affine quadric threefold acting on a square complex. Journal de l'École polytechnique - Mathématiques, Tome 1 (2014) pp. 161-223. doi : 10.5802/jep.8. http://gdmltest.u-ga.fr/item/JEP_2014__1__161_0/

[AFK + 13] Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M. Flexible varieties and automorphism groups, Duke Math. J., Tome 162 (2013) no. 4, pp. 767-823 | MR 3039680 | Zbl pre06157711

[Ale95] Alev, J. A note on Nagata’s automorphism, Automorphisms of affine spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht (1995), pp. 215-221 | MR 1352702 | Zbl 0831.14004

[AOS12] Ardila, F.; Owen, M.; Sullivant, S. Geodesics in CAT (0) cubical complexes, Adv. in Appl. Math., Tome 48 (2012) no. 1, pp. 142-163 | MR 2845512 | Zbl 1275.05055

[BH99] Bridson, M. R.; Haefliger, A. Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften, Tome 319 (1999) | MR 1744486 | Zbl 0988.53001

[BŚ99] Ballmann, W.; Świątkowski, J. On groups acting on nonpositively curved cubical complexes, Enseign. Math. (2), Tome 45 (1999) no. 1-2, pp. 51-81 | MR 1703363 | Zbl 0989.20029

[Can11] Cantat, S. Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2), Tome 174 (2011) no. 1, pp. 299-340 | MR 2811600 | Zbl 1233.14011

[CL13] Cantat, S.; Lamy, S. Normal subgroups in the Cremona group, Acta Math., Tome 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | MR 3037611 | Zbl 1278.14017

[Din12] Dinh, T.-C. Tits alternative for automorphism groups of compact Kähler manifolds, Acta Math. Vietnamatica, Tome 37 (2012) no. 4, pp. 513-529 | MR 3058661 | Zbl 1271.14056

[dlH83] De La Harpe, P. Free groups in linear groups, Enseign. Math. (2), Tome 29 (1983) no. 1-2, pp. 129-144 | MR 702736 | Zbl 0517.20024

[Fru73] Frumkin, M. A. A filtration in the three-dimensional Cremona group, Mat. Sb. (N.S.), Tome 90(132) (1973), p. 196-213, 325 | MR 327769 | Zbl 0254.14006

[Fur83] Furushima, M. Finite groups of polynomial automorphisms in C n , Tohoku Math. J. (2), Tome 35 (1983) no. 3, pp. 415-424 | MR 711357 | Zbl 0567.32010

[GD77] Gizatullin, M. H.; Danilov, V. I. Automorphisms of affine surfaces. II, Izv. Akad. Nauk SSSR Ser. Mat., Tome 41 (1977) no. 1, pp. 54-103 | MR 437545 | Zbl 0357.14003

[Kam79] Kambayashi, T. Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra, Tome 60 (1979) no. 2, pp. 439-451 | MR 549939 | Zbl 0429.14017

[Kur10] Kuroda, S. Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism, Tohoku Math. J. (2), Tome 62 (2010) no. 1, pp. 75-115 | MR 2654304 | Zbl 1210.14072

[Lam01] Lamy, S. L’alternative de Tits pour Aut [ 2 ], J. Algebra, Tome 239 (2001) no. 2, pp. 413-437 | MR 1832900 | Zbl 1040.37031

[Lam13] Lamy, S. On the genus of birational maps between 3-folds (2013) (arXiv:1305.2482)

[LV13] Lamy, S.; Vénéreau, S. The tame and the wild automorphisms of an affine quadric threefold., J. Math. Soc. Japan, Tome 65 (2013) no. 1, pp. 299-320 | MR 3034406 | Zbl pre06152435

[Pan99] Pan, I. Une remarque sur la génération du groupe de Cremona, Bol. Soc. Brasil. Mat. (N.S.), Tome 30 (1999) no. 1, pp. 95-98 | MR 1686984 | Zbl 0972.14006

[Pap95] Papasoglu, P. Strongly geodesically automatic groups are hyperbolic, Invent. Math., Tome 121 (1995) no. 2, pp. 323-334 | MR 1346209 | Zbl 0834.20040

[PV91] Pays, I.; Valette, A. Sous-groupes libres dans les groupes d’automorphismes d’arbres, Enseign. Math. (2), Tome 37 (1991) no. 1-2, pp. 151-174 | MR 1115748 | Zbl 0744.20024

[Ser77a] Serre, J.-P. Arbres, amalgames, SL 2 , Société Mathématique de France, Paris, Astérisque, Tome 46 (1977), pp. 189 p. | MR 476875 | Zbl 0369.20013

[Ser77b] Serre, J.-P. Cours d’arithmétique, Presses Universitaires de France, Paris (1977) | MR 498338 | Zbl 0376.12001

[Wis12] Wise, D. T. From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, American Mathematical Society, Providence, RI, CBMS Regional Conference Series in Mathematics, Tome 117 (2012) | MR 2986461 | Zbl 1278.20055

[Wri13] Wright, D. The Amalgamated Product Structure of the Tame Automorphism Group in Dimension Three (2013) (arXiv:1310.8325)

[Wri92] Wright, D. Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc., Tome 331 (1992) no. 1, pp. 281-300 | MR 1038019 | Zbl 0767.14006