On closed subgroups of the group of homeomorphisms of a manifold
[Sur les sous-groupes du groupe des homéomorphismes d’une variété]
Le Roux, Frédéric
Journal de l'École polytechnique - Mathématiques, Tome 1 (2014), p. 147-159 / Harvested from Numdam

Soit M une variété triangulable compacte. Nous montrons que, parmi les sous-groupes de Homeo 0 (M) (composante connexe de l’identité du groupe des homéomorphismes de M), le sous-groupe des homéomorphismes préservant le volume est maximal.

Let M be a triangulable compact manifold. We prove that, among closed subgroups of Homeo 0 (M) (the identity component of the group of homeomorphisms of M), the subgroup consisting of volume preserving elements is maximal.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/jep.7
Classification:  57S05,  57M60,  37E30
Mots clés: Groupes de transformations, homéomorphismes, sous-groupes fermés maximaux
@article{JEP_2014__1__147_0,
     author = {Le Roux, Fr\'ed\'eric},
     title = {On closed subgroups of the group of homeomorphisms of a manifold},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     volume = {1},
     year = {2014},
     pages = {147-159},
     doi = {10.5802/jep.7},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEP_2014__1__147_0}
}
Le Roux, Frédéric. On closed subgroups of the group of homeomorphisms of a manifold. Journal de l'École polytechnique - Mathématiques, Tome 1 (2014) pp. 147-159. doi : 10.5802/jep.7. http://gdmltest.u-ga.fr/item/JEP_2014__1__147_0/

[Bes04] Bestvina, M. Questions in geometric group theory, collected by M. Bestvina (2004) (http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf)

[Bro62] Brown, M. A mapping theorem for untriangulated manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J. (1962), pp. 92-94 | MR 158374 | Zbl 1246.57052

[Fat80] Fathi, A. Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup. (4), Tome 13 (1980) no. 1, pp. 45-93 | Numdam | MR 584082 | Zbl 0443.58011

[Ghy01] Ghys, É. Groups acting on the circle, Enseign. Math. (2), Tome 47 (2001) no. 3-4, pp. 329-407 | MR 1876932 | Zbl 1044.37033

[GM06] Giblin, J.; Markovic, V. Classification of continuously transitive circle groups, Geom. Topol., Tome 10 (2006), pp. 1319-1346 | Article | MR 2255499 | Zbl 1126.37025

[GP75] Goffman, C.; Pedrick, G. A proof of the homeomorphism of Lebesgue-Stieltjes measure with Lebesgue measure, Proc. Amer. Math. Soc., Tome 52 (1975), pp. 196-198 | MR 376995 | Zbl 0326.28002

[Kir69] Kirby, R. C. Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2), Tome 89 (1969), pp. 575-582 | MR 242165 | Zbl 0176.22004

[KT13] Kwakkel, F.; Tal, F. Homogeneous transformation groups of the sphere (2013) (arXiv:1309.0179v1)

[Nav07] Navas, A. Grupos de difeomorfismos del círculo, Sociedade Brasileira de Matemática, Rio de Janeiro, Ensaios Matemáticos, Tome 13 (2007), pp. ii+249 | Zbl 1163.37002

[OU41] Oxtoby, J. C.; Ulam, S. M. Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2), Tome 42 (1941), pp. 874-920 | MR 5803 | Zbl 0063.06074

[Qui82] Quinn, F. Ends of maps. III. Dimensions 4 and 5, J. Differential Geom., Tome 17 (1982) no. 3, pp. 503-521 http://projecteuclid.org/euclid.jdg/1214437139 | MR 679069 | Zbl 0533.57009