We investigate the size of the regular set of weak solutions of the Navier–Stokes equation which are close, in an appropriate sense, to strong solutions. More precisely, if is a strong solution with initial datum , we focus on weak solutions evolving by initial data such that the difference is small in the weighted space with weight . This is different by any smallness assumption in translation invariant critical Banach spaces. We also prove similar results in the small data setting.
@article{JEDP_2015____A5_0, author = {Luc\`a, Renato}, title = {On the size of the regular set of suitable weak solutions of the Navier--Stokes equation}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2015}, pages = {1-14}, doi = {10.5802/jedp.634}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2015____A5_0} }
Lucà, Renato. On the size of the regular set of suitable weak solutions of the Navier–Stokes equation. Journées équations aux dérivées partielles, (2015), pp. 1-14. doi : 10.5802/jedp.634. http://gdmltest.u-ga.fr/item/JEDP_2015____A5_0/
[1] P. Auscher, S. Dubois, P. Tchamitchian. On the stability of global solutions to Navier–Stokes equations in the space. J. Math. Pures Appl., (9) 83 (2004), no. 6, 673–697. | MR 2062638 | Zbl 1107.35096
[2] L. Caffarelli, R. Kohn and L. Nirenberg. First order interpolation inequalities with weights. Compositio Math., 53 (1984), no. 3, 259–275. | Numdam | MR 768824 | Zbl 0563.46024
[3] L. A. Caffarelli, R. Kohn and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math., 35 (1982), no. 6, 771–831. | MR 673830 | Zbl 0509.35067
[4] M. Cannone. A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoamericana, 13 (1997), no. 3, 515–541. | MR 1617394 | Zbl 0897.35061
[5] D. Chae, J. Lee. On the regularity of the axisymmetric solutions of the Navier–Stokes equations. Math. Z., 239 (2002), no. 4, 645–671. | MR 1902055 | Zbl 0992.35068
[6] J.-Y. Chemin, I. Gallagher. Wellposedness and stability results for the Navier-Stokes equations in . Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), no. 2, 599–624. | Numdam | MR 2504045 | Zbl 1165.35038
[7] J.-Y. Chemin, I. Gallagher. On the global wellposedness of the 3-D Navier-Stokes equations with large initial data. Ann. Sci. École Norm. Sup., (4) 39 (2006), no. 4, 679–698. | MR 2290141 | Zbl 1124.35052
[8] P. D’Ancona and R. Lucà. On the regularity set and angular integrability for the Navier–Stokes equation. ArXiv:1501.07780.
[9] P. D’Ancona and R. Lucà. On some stability and regularity properties of the Navier–Stokes equation. Preprint.
[10] P. Federbush. Navier and Stokes meet the wavelet. Comm. Math. Phys., 155 (1993), no. 2, 219–248. | MR 1230026 | Zbl 0795.35080
[11] C. Foias, J.-C. Saut. Asymptotic behavior, as , of solutions of Navier-Stokes equations and nonlinear spectral manifolds. Indiana Univ. Math. J., 33 (1984), no. 3, 459–477. | MR 740960 | Zbl 0565.35087
[12] H. Fujita and T. Kato. On the Navier–Stokes initial value problem I. Arch. Rational Mech. Anal. 16 (1964) 269–315. | MR 166499 | Zbl 0126.42301
[13] I. Gallagher. The tridimensional Navier–Stokes equations with almost bidimensional data: stability, uniqueness and life span. Internat. Math. Res. Notices, (1997), no. 18, 919–935. | MR 1481611 | Zbl 0893.35098
[14] I. Gallagher. Stability and weak-strong uniqueness for axisymmetric solutions of the Navier–Stokes equations Differential Integral Equations, 16 (2003), no. 5, 557–572. | MR 1973062 | Zbl 1161.76456
[15] I. Gallagher, S. Ibrahim and M. Majdoub. Existence et unicité de solutions pour le système de Navier-Stokes axisymètrique. (French) [Existence and uniqueness of solutions for an axisymmetric Navier-Stokes system]. Comm. Partial Differential Equations, 26 (2001), no. 5-6, 883–907. | MR 1843288 | Zbl 0998.35035
[16] I. Gallagher, D. Iftimie and F. Planchon. Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. Inst. Fourier, 53 (2003), no. 5, 1387–1424. | Numdam | MR 2032938 | Zbl 1038.35054
[17] Y. Giga and T. Miyakawa. Navier–Stokes flow in with measures as initial vorticity and Morrey Spaces. Comm. Partial Differential Equations, 14 (1989), no. 5, 577–618. | MR 993821 | Zbl 0681.35072
[18] D. Iftimie. The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes equations. Bull. Soc. Math. France, 127 (1999), no. 4, 473–517. | Numdam | MR 1765551 | Zbl 0946.35059
[19] T. Kato. Strong -solutions of the Navier–Stokes equation in , with applications to weak solutions. Math. Z., 187 (1984), no. 4, 471–480. | MR 760047 | Zbl 0545.35073
[20] T. Kato. Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. (N.S.), 22 (1992), no. 2, 127–155. | MR 1179482 | Zbl 0781.35052
[21] T. Kawanago. Stability estimate for strong solutions of the Navier–Stokes system and its applications. Electron. J. Differential Equations, (1998), no. 15, 23 pp. (electronic). | MR 1629224 | Zbl 0912.35120
[22] H. Koch and D. Tataru. Well-posedness for the Navier–Stokes equations. Adv. Math., 157 (2001), no. 1, 22–35. | MR 1808843 | Zbl 0972.35084
[23] H. Kozono, M. Yamazaki. Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differential Equations, 19 (1994), no. 5-6, 959–1014. | MR 1274547 | Zbl 0803.35068
[24] O. A. Ladyzhenskaja. Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry. (Russian) Zap. Nau?n. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968) 155–177. | MR 241833 | Zbl 0202.37302
[25] S. Leonardi, J. Málek, J. Necas, M. Pokorný. On axially symmetric flows in . Z. Anal. Anwendungen 18 (1999), no. 3, 639–649. | MR 1718156 | Zbl 0943.35066
[26] P. G. Lemarié-Rieusset. Recent developments in the Navier–Stokes problem. Chapman and Hall/CRC Research Notes in Mathematics, 431. Chapman and Hall/CRC, Boca Raton, FL, 2002. | MR 1938147 | Zbl 1034.35093
[27] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63 (1934), no. 1, 193–248. | MR 1555394
[28] F. Lin. A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math., 51 (1998), no. 3, 241–257. | MR 1488514 | Zbl 0958.35102
[29] A. Mahalov, E. S. Titi, S. Leibovich. Invariant helical subspaces for the Navier–Stokes equations. Arch. Rational Mech. Anal., 112 (1990), no. 3, 193–222. | MR 1076072 | Zbl 0708.76044
[30] F. Planchon. Global strong solutions in Sobolev or Lebesgue spces to the incompressible Navier–Stokes equations in . Ann. Inst. Henry Poincare, Anal. Non Lineaire, 13:319–336, 1996. | Numdam | MR 1395675 | Zbl 0865.35101
[31] G. Ponce, R. Racke, T. C. Sideris and E. S. Titi. Global stability of large solutions to the Navier–Stokes equations. Comm. Math. Phys. 159 (1994), no. 2, 329–341. | MR 1256992 | Zbl 0795.35082
[32] V. Scheffer. Partial regularity of solutions to the Navier–Stokes equations. Pacific J. Math., 66 (1976), no. 2, 535–552. | MR 454426 | Zbl 0325.35064
[33] V. Scheffer. Hausdroff measure and the Navier–Stokes equations. Comm. Math. Phys., 55 (1977), no. 2, 97–112. | MR 510154 | Zbl 0357.35071
[34] J. Serrin. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal., 9 (1962) 187–195. | MR 136885 | Zbl 0106.18302
[35] E. M. Stein. Note on singular integrals. Proc. Amer. Math. Soc., 8 (1957), 250–254. | MR 88606 | Zbl 0077.27301
[36] M. E. Taylor. Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Comm. Part. Diff. Eq., 17(9-10):1407–1456, 1992. | MR 1187618 | Zbl 0771.35047
[37] R. Témam. Navier–Stokes equations, Theory and Numerical Analysis. North-Holland. Amsterdam and New York, 1977. | Zbl 0568.35002
[38] M. R. Ukhovskii and V. I. Iudovich. Axially symmetric flows of ideal and viscous fluids filling the whole space. Prikl. Mat. Meh., 32 59–69 (Russian). Translated as J. Appl. Math. Mech., 32 (1968) 52–61. | MR 239293 | Zbl 0172.53405