Stability in exponential time of Minkowski space-time with a space-like translation symmetry
Huneau, Cécile
Journées équations aux dérivées partielles, (2015), p. 1-12 / Harvested from Numdam

In this note, we discuss the nonlinear stability in exponential time of Minkowki space-time with a translation space-like Killing field, proved in [13]. In the presence of such a symmetry, the 3+1 vacuum Einstein equations reduce to the 2+1 Einstein equations with a scalar field. We work in generalized wave coordinates. In this gauge Einstein equations can be written as a system of quasilinear quadratic wave equations. The main difficulty in [13] is due to the decay in 1 t of free solutions to the wave equation in 2 dimensions, which is weaker than in 3 dimensions. As in [21], we have to rely on the particular structure of Einstein equations in wave coordinates. We also have to carefully chose an approximate solution with a non trivial behaviour at space-like infinity to enforce convergence to Minkowski space-time at time-like infinity. This article appears under the same form in the proceedings of the Laurent Schwartz seminar.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/jedp.632
@article{JEDP_2015____A3_0,
     author = {Huneau, C\'ecile},
     title = {Stability in exponential time of Minkowski space-time with a space-like translation symmetry},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2015},
     pages = {1-12},
     doi = {10.5802/jedp.632},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2015____A3_0}
}
Huneau, Cécile. Stability in exponential time of Minkowski space-time with a space-like translation symmetry. Journées équations aux dérivées partielles,  (2015), pp. 1-12. doi : 10.5802/jedp.632. http://gdmltest.u-ga.fr/item/JEDP_2015____A3_0/

[1] Alinhac, S. The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., Tome 145 (2001) no. 3, pp. 597-618 | Article | MR 1856402 | Zbl 1112.35341

[2] Alinhac, S. An example of blowup at infinity for a quasilinear wave equation, Astérisque (2003) no. 284, pp. 1-91 (Autour de l’analyse microlocale) | MR 2003417 | Zbl 1053.35097

[3] Ashtekar, A.; Bičák, J.; Schmidt, B. G. Asymptotic structure of symmetry-reduced general relativity, Phys. Rev. D (3), Tome 55 (1997) no. 2, pp. 669-686 | Article | MR 1435250

[4] Bartnik, R.; Isenberg, J. The constraint equations, The Einstein equations and the large scale behavior of gravitational fields, Birkhäuser, Basel (2004), pp. 1-38 | MR 2098912 | Zbl 1073.83009

[5] Beck, G. Zur Theorie binärer Gravitationsfelder, Zeitschrift für Physik, Tome 33 (1925) no. 14, pp. 713-728

[6] Berger, B. K.; Chruściel, P. T.; Moncrief, V. On “asymptotically flat” space-times with G 2 -invariant Cauchy surfaces, Ann. Physics, Tome 237 (1995) no. 2, pp. 322-354 | Article | MR 1314228 | Zbl 0967.83507

[7] Choquet-Bruhat, Y.; Geroch, R. Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys., Tome 14 (1969), pp. 329-335 | MR 250640 | Zbl 0182.59901

[8] Choquet-Bruhat, Y.; Moncrief, V. Nonlinear stability of an expanding universe with the S 1 isometry group, Partial differential equations and mathematical physics (Tokyo, 2001), Birkhäuser Boston, Boston, MA (Progr. Nonlinear Differential Equations Appl.) Tome 52 (2003), pp. 57-71 | MR 1957625 | Zbl 1062.35149

[9] Christodoulou, D.; Klainerman, S. The global nonlinear stability of the Minkowski space, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 41 (1993), pp. x+514 | MR 1316662 | Zbl 0827.53055

[10] Godin, P. Lifespan of solutions of semilinear wave equations in two space dimensions, Comm. Partial Differential Equations, Tome 18 (1993) no. 5-6, pp. 895-916 | Article | MR 1218523 | Zbl 0813.35055

[11] Hoshiga, A. The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in 2-dimensional space, Funkcial. Ekvac., Tome 49 (2006) no. 3, pp. 357-384 | Article | MR 2297944 | Zbl 1149.35383

[12] Huneau, Céline Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case II (2014) (http://arxiv.org/abs/1410.6061)

[13] Huneau, Céline Stability in exponential time of Minkowski Space-time with a translation space-like Killing field (2014) (http://arxiv.org/abs/1410.6068)

[14] John, F. Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math., Tome 34 (1981) no. 1, pp. 29-51 | Article | MR 600571 | Zbl 0453.35060

[15] Klainerman, S. Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., Tome 38 (1985) no. 3, pp. 321-332 | Article | MR 784477 | Zbl 0635.35059

[16] Klainerman, S. The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), Amer. Math. Soc., Providence, RI (Lectures in Appl. Math.) Tome 23 (1986), pp. 293-326 | MR 837683 | Zbl 0599.35105

[17] Kubo, H.; Kubota, K. Scattering for systems of semilinear wave equations with different speeds of propagation, Adv. Differential Equations, Tome 7 (2002) no. 4, pp. 441-468 | MR 1869119 | Zbl 1223.35232

[18] Lindblad, H. Global solutions of nonlinear wave equations, Comm. Pure Appl. Math., Tome 45 (1992) no. 9, pp. 1063-1096 | Article | MR 1177476 | Zbl 0840.35065

[19] Lindblad, H. Global solutions of quasilinear wave equations, Amer. J. Math., Tome 130 (2008) no. 1, pp. 115-157 | Article | MR 2382144 | Zbl 1144.35035

[20] Lindblad, H.; Rodnianski, I. The weak null condition for Einstein’s equations, C. R. Math. Acad. Sci. Paris, Tome 336 (2003) no. 11, pp. 901-906 | Article | MR 1994592 | Zbl 1045.35101

[21] Lindblad, H.; Rodnianski, I. The global stability of Minkowski space-time in harmonic gauge, Ann. of Math. (2), Tome 171 (2010) no. 3, pp. 1401-1477 | Article | MR 2680391 | Zbl 1192.53066

[22] Wald, R. M. General relativity, University of Chicago Press, Chicago, IL (1984), pp. xiii+491 | Article | MR 757180 | Zbl 0549.53001