La méthode des vortex est une approche théorique et numérique couramment utilisée afin d’implémenter le mouvement d’un fluide parfait, dans laquelle le tourbillon est approché par une somme de points vortex, de sorte que les équations d’Euler se réécrivent comme un système d’équations différentielles ordinaires. Une telle méthode est rigoureusement justifiée dans le plan complet, grâce aux formules explicites de Biot et Savart. Dans un domaine extérieur, nous remplaçons également le bord imperméable par une collection de points vortex, générant une circulation autour de l’obstacle. La densité de ces points est choisie de sorte que le flot demeure tangent au bord sur certains points intermédiaires aux paires de tourbillons adjacents sur le bord. Dans ce travail, nous proposons une justification rigoureuse de cette méthode dans des domaines extérieurs. L’une des principales difficultés mathématiques étant que le noyau de Biot-Savart définit un opérateur intégral singulier lorsqu’il est restreint à une courbe. Par souci de simplicité et de clarté, nous traitons seulement le cas du disque unité dans le plan, approché par un maillage de points uniformément répartis. La version complète et générale de notre travail est disponible en [1].
The vortex method is a common numerical and theoretical approach used to implement the motion of an ideal flow, in which the vorticity is approximated by a sum of point vortices, so that the Euler equations read as a system of ordinary differential equations. Such a method is well justified in the full plane, thanks to the explicit representation formulas of Biot and Savart. In an exterior domain, we also replace the impermeable boundary by a collection of point vortices generating the circulation around the obstacle. The density of these point vortices is chosen in order that the flow remains tangent at midpoints between adjacent vortices. In this work, we provide a rigorous justification for this method in exterior domains. One of the main mathematical difficulties being that the Biot-Savart kernel defines a singular integral operator when restricted to a curve. For simplicity and clarity, we only treat the case of the unit disk in the plane approximated by a uniformly distributed mesh of point vortices. The complete and general version of our work is available in [1].
@article{JEDP_2014____A5_0, author = {Ars\'enio, Diogo and Dormy, Emmanuel and Lacave, Christophe}, title = {The vortex method for 2D ideal flows in the exterior of a disk}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2014}, pages = {1-22}, doi = {10.5802/jedp.108}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2014____A5_0} }
Arsénio, Diogo; Dormy, Emmanuel; Lacave, Christophe. The vortex method for 2D ideal flows in the exterior of a disk. Journées équations aux dérivées partielles, (2014), pp. 1-22. doi : 10.5802/jedp.108. http://gdmltest.u-ga.fr/item/JEDP_2014____A5_0/
[1] The Vortex Method for 2D Ideal Flows in Exterior Domains (2014) (In progress)
[2] Method of discrete vortices, CRC Press, Boca Raton, FL (1993), pp. vii+451 (Translated from the 1985 Russian edition by V. A. Khokhryakov and revised by the authors) | MR 1222195
[3] On the validity of vortex methods for nonsmooth flows, Vortex methods (Los Angeles, CA, 1987), Springer, Berlin (Lecture Notes in Math.) Tome 1360 (1988), pp. 56-67 | Article | MR 979561 | Zbl 0669.76039
[4] Vortex methods, Cambridge University Press, Cambridge (2000), pp. xiv+313 (Theory and practice) | Article | MR 1755095 | Zbl 0953.76001
[5] Methods of mathematical physics. Vol. II, John Wiley & Sons, Inc., New York, Wiley Classics Library (1989), pp. xxii+830 (Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication) | MR 1013360 | Zbl 0729.00007
[6] The Two-Dimensional Euler Equations on Singular Exterior Domains, Submitted (2013) (arXiv preprint arXiv:1311.5988)
[7] Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Classics in Mathematics (2001), pp. xiv+517 (Reprint of the 1998 edition) | MR 1814364 | Zbl 1042.35002
[8] Vortex wakes of Aircrafts, Springer (2009)
[9] Convergence of the point vortex method for the -D Euler equations, Comm. Pure Appl. Math., Tome 43 (1990) no. 3, pp. 415-430 | Article | MR 1040146 | Zbl 0694.76013
[10] When is a function that satisfies the Cauchy-Riemann equations analytic?, Amer. Math. Monthly, Tome 85 (1978) no. 4, pp. 246-256 | MR 470179 | Zbl 0416.30002
[11] Numerical computation of internal and external flows, Wiley series in numerical methods in engineering (1988)
[12] Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations, Tome 28 (2003) no. 1-2, pp. 349-379 | Article | MR 1974460 | Zbl 1094.76007
[13] Vorticity and incompressible flow, Cambridge University Press, Cambridge, Cambridge Texts in Applied Mathematics, Tome 27 (2002), pp. xii+545 | MR 1867882 | Zbl 0983.76001
[14] On the vortex-wave system, Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland, Amsterdam (North-Holland Delta Ser.) (1991), pp. 79-95 | MR 1098512 | Zbl 0733.76015
[15] Singular integral equations, Wolters-Noordhoff Publishing, Groningen (1972), pp. xii+7–447 (Boundary problems of functions theory and their applications to mathematical physics, Revised translation from the Russian, edited by J. R. M. Radok, Reprinted) | MR 355494 | Zbl 0174.16201
[16] The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., Tome 49 (1996) no. 9, pp. 911-965 | Article | MR 1399201 | Zbl 0862.35092
[17] Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin (1999), pp. xx+624 (A practical introduction) | Article | MR 1717819 | Zbl 0923.76004