From classical mechanics to kinetic theory and fluid dynamics
Gallagher, Isabelle
Journées équations aux dérivées partielles, (2014), p. 1-14 / Harvested from Numdam

In these notes we report on a work in collaboration with Thierry Bodineau and Laure Saint-Raymond, where we show how the heat equation can be obtained from a deterministic system of hard spheres when the number of particles goes to infinity while their radius simultaneously goes to zero. As suggested by Hilbert in his sixth problem, the kinetic theory of Boltzmann is used as an intermediate level of description.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/jedp.105
@article{JEDP_2014____A2_0,
     author = {Gallagher, Isabelle},
     title = {From classical mechanics to kinetic theory and fluid dynamics},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2014},
     pages = {1-14},
     doi = {10.5802/jedp.105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2014____A2_0}
}
Gallagher, Isabelle. From classical mechanics to kinetic theory and fluid dynamics. Journées équations aux dérivées partielles,  (2014), pp. 1-14. doi : 10.5802/jedp.105. http://gdmltest.u-ga.fr/item/JEDP_2014____A2_0/

[1] R. Alexander, The Infinite Hard Sphere System, Ph.D. dissertation, Dept. Mathematics, Univ. California, Berkeley, 1975. | MR 2625918

[2] H. van Beijeren, O. E. Lanford, J. L. Lebowitz, H. Spohn, Equilibrium Time Correlation Functions in the Low Density Limit. Jour. Stat. Phys. 22, (1980), 237-257. | MR 560556 | Zbl 0508.60089

[3] Th. Bodineau, I. Gallagher, L. Saint-Raymond. Limite de diffusion linéaire pour un système déterministe de sphères dures, C. R. Math. Acad. Sci. Paris 352 (2014), no. 5, 411-419. | MR 3194248 | Zbl 1291.35210

[4] T. Bodineau, I. Gallagher and L. Saint-Raymond. The Brownian motion as the limit of a deterministic system of hard-spheres, in revision at Inventiones Mathematicae.

[5] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer Verlag, New York NY, 1994. | MR 1307620 | Zbl 0813.76001

[6] C. Cercignani, V. I. Gerasimenko, D. I. Petrina, Many-Particle Dynamics and Kinetic Equations, Kluwer Academic Publishers, Netherlands, 1997. | MR 1472233 | Zbl 0933.82001

[7] I. Gallagher, L. Saint-Raymond, B. Texier. From Newton to Boltzmann : the case of hard-spheres and short-range potentials, Zürich Lectures in Advanced Mathematics 18 2014. | MR 3157048

[8] D. Hilbert, Sur les problèmes futurs des mathématiques, in Compte-Rendu du 2ème Congrès International de Mathématiques, Gauthier-Villars, Paris (1902), 58-114.

[9] O. E. Lanford, Time evolution of large classical systems, Lect. Notes in Physics 38, J. Moser ed., 1-111, Springer Verlag (1975). | MR 479206 | Zbl 0329.70011

[10] J. Lebowitz, H. Spohn, Steady state self-diffusion at low density. J. Statist. Phys. 29 (1982), 39-55. | MR 676928 | Zbl 0511.60098

[11] M. Pulvirenti, C. Saffirio, S. Simonella, On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys. 64 (2014), no. 2, 64 pp. | MR 3190204 | Zbl 1296.82051

[12] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics, Springer-Verlag 1971, 2009. | MR 2683475 | Zbl 1171.82002

[13] H. Spohn, Large scale dynamics of interacting particles, Springer-Verlag 174 (1991). | Zbl 0742.76002