Derivation of Hartree’s theory for mean-field Bose gases
[Dérivation de la théorie de Hartree pour des gaz de bosons dans le régime de champ moyen]
Lewin, Mathieu
Journées équations aux dérivées partielles, (2013), p. 1-21 / Harvested from Numdam

Dans cet article, nous présentons des résultats obtenus avec Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty et Jan Philip Solovej. Nous considérons un système de N bosons qui interagissent avec un potentiel d’intensité 1/N (on parle de régime de champ moyen). Dans la limite où N, nous montrons que le premier ordre du développement des valeurs propres du Hamiltonien à N corps est donné par la théorie non linéaire de Hartree, alors que l’ordre suivant est donné par l’opérateur de Bogoliubov. Nous discutons également en détails du phénomène de condensation de Bose-Einstein dans de tels systèmes.

This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of N bosons with an interaction of intensity 1/N (mean-field regime). In the limit N, we prove that the first order in the expansion of the eigenvalues of the many-particle Hamiltonian is given by the nonlinear Hartree theory, whereas the next order is predicted by the Bogoliubov Hamiltonian. We also discuss the occurrence of Bose-Einstein condensation in these systems.

Publié le : 2013-01-01
DOI : https://doi.org/10.5802/jedp.103
Classification:  35Q40,  81Q99
@article{JEDP_2013____A7_0,
     author = {Lewin, Mathieu},
     title = {Derivation of Hartree's theory for mean-field Bose gases},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2013},
     pages = {1-21},
     doi = {10.5802/jedp.103},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2013____A7_0}
}
Lewin, Mathieu. Derivation of Hartree’s theory for mean-field Bose gases. Journées équations aux dérivées partielles,  (2013), pp. 1-21. doi : 10.5802/jedp.103. http://gdmltest.u-ga.fr/item/JEDP_2013____A7_0/

[1] Aftalion, Amandine Vortices in Bose–Einstein Condensates, Springer, Progress in nonlinear differential equations and their applications, Tome 67 (2006) | MR 2228356 | Zbl 1129.82004

[2] Aftalion, Amandine; Blanc, Xavier; Dalibard, Jean Vortex patterns in a fast rotating Bose-Einstein condensate, Phys. Rev. A, Tome 71 (2005) no. 2, pp. 023611 http://link.aps.org/abstract/PRA/v71/e023611 | Article

[3] Aftalion, Amandine; Blanc, Xavier; Nier, Francis Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates, J. Funct. Anal., Tome 241 (2006) no. 2, pp. 661-702 | MR 2271933 | Zbl 1118.82004

[4] Ammari, Zied; Nier, Francis Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis, Annales Henri Poincaré, Tome 9 (2008), pp. 1503-1574 (10.1007/s00023-008-0393-5) | MR 2465733 | Zbl 1171.81014

[5] Ammari, Zied; Nier, Francis Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., Tome 95 (2011) no. 6, pp. 585-626 | MR 2802894 | Zbl 1251.81062

[6] Bach, Volker Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., Tome 21 (1991) no. 2, pp. 139-149 | Article | MR 1093525 | Zbl 0725.47049

[7] Bach, Volker; Lewis, Roger; Lieb, Elliott H.; Siedentop, Heinz On the number of bound states of a bosonic N-particle Coulomb system, Math. Z., Tome 214 (1993) no. 3, pp. 441-459 | Article | MR 1245205 | Zbl 0852.47036

[8] Bardos, Claude; Golse, François; Mauser, Norbert J. Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal., Tome 7 (2000) no. 2, pp. 275-293 (Cathleen Morawetz: a great mathematician) | MR 1869286 | Zbl 1003.81027

[9] Benguria, R.; Lieb, E. H. Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters, Tome 50 (1983), pp. 1771-1774 | Article

[10] Bogoliubov, N. N. On the Theory of Superfluidity, J. Phys. (USSR), Tome 11 (1947), pp. 23

[11] Calogero, F. Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., Tome 12 (1971), pp. 419-436 | MR 280103 | Zbl 1002.70558

[12] Calogero, F.; Marchioro, C. Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys., Tome 10 (1969), pp. 562-569 | MR 339719

[13] Choquet, Gustave Lectures on analysis. Vol 2. Representation theory, W.A. Benjamin, Inc, New York, Mathematics lecture note series (1969) | Zbl 0181.39602

[14] Christandl, Matthias; König, Robert; Mitchison, Graeme; Renner, Renato One-and-a-half quantum de Finetti theorems, Comm. Math. Phys., Tome 273 (2007) no. 2, pp. 473-498 | Article | MR 2318315 | Zbl 1126.81032

[15] Cornean, H. D.; Derezinski, J.; Zin, P. On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys., Tome 50 (2009) no. 6, pp. 062103 http://link.aip.org/link/?JMP/50/062103/1 | Article | MR 2541168 | Zbl 1216.82006

[16] De Finetti, Bruno Funzione caratteristica di un fenomeno aleatorio, Atti della R. Accademia Nazionale dei Lincei (1931) (Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali)

[17] De Finetti, Bruno La prévision : ses lois logiques, ses sources subjectives, Ann. Inst. H. Poincaré, Tome 7 (1937) no. 1, pp. 1-68 | Numdam | MR 1508036 | Zbl 0017.07602

[18] Dereziński, J.; Napiórkowski, M. Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, Annales Henri Poincaré (2014), pp. 1-31 | Article

[19] Diaconis, P.; Freedman, D. Finite exchangeable sequences, Ann. Probab., Tome 8 (1980) no. 4, pp. 745-764 http://www.jstor.org/stable/2242823 | MR 577313 | Zbl 0434.60034

[20] Dynkin, E. B. Classes of equivalent random quantities, Uspehi Matem. Nauk (N.S.), Tome 8 (1953) no. 2(54), pp. 125-130 | MR 55601 | Zbl 0053.09807

[21] Elgart, Alexander; Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Ration. Mech. Anal., Tome 179 (2006) no. 2, pp. 265-283 | Article | MR 2209131 | Zbl 1086.81035

[22] Elgart, Alexander; Schlein, Benjamin Mean field dynamics of boson stars, Comm. Pure Appl. Math., Tome 60 (2007) no. 4, pp. 500-545 | MR 2290709 | Zbl 1113.81032

[23] Erdös, L.; Schlein, B.; Yau, H.-T. Ground-state energy of a low-density Bose gas: A second-order upper bound, Phys. Rev. A, Tome 78 (2008) no. 5, pp. 053627 | Article

[24] Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc., Tome 22 (2009) no. 4, pp. 1099-1156 | Article | MR 2525781 | Zbl 1207.82031

[25] Fannes, M.; Spohn, H.; Verbeure, A. Equilibrium states for mean field models, J. Math. Phys., Tome 21 (1980) no. 2, pp. 355-358 | Article | MR 558480 | Zbl 0445.46049

[26] Fröhlich, Jürg; Knowles, Antti; Schwarz, Simon On the mean-field limit of bosons with Coulomb two-body interaction, Commun. Math. Phys., Tome 288 (2009) no. 3, pp. 1023-1059 | Article | MR 2504864 | Zbl 1177.82016

[27] Ginibre, J.; Velo, G. The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Commun. Math. Phys., Tome 66 (1979) no. 1, pp. 37-76 http://projecteuclid.org/getRecord?id=euclid.cmp/1103904940 | MR 530915 | Zbl 0443.35067

[28] Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., Tome 1 (1960), pp. 516-523 | MR 128913 | Zbl 0098.21704

[29] Giuliani, Alessandro; Seiringer, Robert The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys., Tome 135 (2009) no. 5-6, pp. 915-934 | Article | MR 2548599 | Zbl 1172.82006

[30] Gottlieb, Alex D. Examples of bosonic de Finetti states over finite dimensional Hilbert spaces, J. Stat. Phys., Tome 121 (2005) no. 3-4, pp. 497-509 | Article | MR 2185337 | Zbl 1149.82308

[31] Grech, Philip; Seiringer, Robert The Excitation Spectrum for Weakly Interacting Bosons in a Trap, Comm. Math. Phys., Tome 322 (2013) no. 2, pp. 559-591 | Article | MR 3077925

[32] Hartree, D. R. The wave-mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods., Proc. Camb. Phil. Soc., Tome 24 (1928), pp. 89-312

[33] Hepp, K. The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., Tome 35 (1974) no. 4, pp. 265-277 | MR 332046

[34] Hewitt, Edwin; Savage, Leonard J. Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., Tome 80 (1955), pp. 470-501 | MR 76206 | Zbl 0066.29604

[35] Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A, Tome 16 (1977) no. 5, pp. 1782-1785 | MR 471726

[36] Hudson, R. L.; Moody, G. R. Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Tome 33 (1975/76) no. 4, pp. 343-351 | MR 397421 | Zbl 0304.60001

[37] Kiessling, Michael K.-H. The Hartree limit of Born’s ensemble for the ground state of a bosonic atom or ion, J. Math. Phys., Tome 53 (2012) no. 9, pp. 095223 http://link.aip.org/link/?JMP/53/095223/1 | Article | MR 2905805 | Zbl pre06245354

[38] Knowles, Antti; Pickl, Peter Mean-field dynamics: singular potentials and rate of convergence, Commun. Math. Phys., Tome 298 (2010) no. 1, pp. 101-138 | Article | MR 2657816 | Zbl 1213.81180

[39] Lewin, Mathieu Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., Tome 260 (2011), pp. 3535-3595 | Article | MR 2781970 | Zbl 1216.81180

[40] Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas Derivation of Hartree’s theory for generic mean-field Bose gases, Adv. Math., Tome 254 (2014), pp. 570-621 | Article | Zbl pre06285011

[41] Lewin, Mathieu; Nam, Phan Thành; Schlein, Benjamin Fluctuations around Hartree states in the mean-field regime (2013) http://arxiv.org/abs/1307.0665 (arXiv eprint)

[42] Lewin, Mathieu; Nam, Phan Thanh; Serfaty, Sylvia; Solovej, Jan Philip Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math., Tome in press (2013)

[43] Lieb, Elliott H. Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), Tome 130 (1963), pp. 1616-1624 | MR 156631 | Zbl 0138.23002

[44] Lieb, Elliott H.; Liniger, Werner Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), Tome 130 (1963), pp. 1605-1616 | MR 156630 | Zbl 0138.23001

[45] Lieb, Elliott H.; Seiringer, Robert Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Commun. Math. Phys., Tome 264 (2006) no. 2, pp. 505-537 | MR 2215615 | Zbl 1233.82004

[46] Lieb, Elliott H.; Seiringer, Robert; Solovej, Jan Philip; Yngvason, Jakob The mathematics of the Bose gas and its condensation, Birkhäuser, Oberwolfach Seminars (2005) | MR 2143817 | Zbl 1104.82012

[47] Lieb, Elliott H.; Solovej, Jan Philip Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., Tome 217 (2001) no. 1, pp. 127-163 | Article | MR 1815028 | Zbl 1042.82004

[48] Lieb, Elliott H.; Solovej, Jan Philip Ground state energy of the two-component charged Bose gas., Commun. Math. Phys., Tome 252 (2004) no. 1-3, pp. 485-534 | MR 2104887 | Zbl 1124.82303

[49] Lieb, Elliott H.; Thirring, Walter E. Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Physics, Tome 155 (1984) no. 2, pp. 494-512 | MR 753345

[50] Lieb, Elliott H.; Yau, Horng-Tzer The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., Tome 112 (1987) no. 1, pp. 147-174 | MR 904142 | Zbl 0641.35065

[51] Lions, Pierre-Louis The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 1 (1984) no. 2, pp. 109-149 | Numdam | Zbl 0541.49009

[52] Lions, Pierre-Louis The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 1 (1984) no. 4, pp. 223-283 | Numdam | Zbl 0704.49004

[53] Lions, Pierre-Louis Mean-Field games and applications (2007) (Lectures at the Collège de France, unpublished) | Zbl 1156.91321

[54] Petz, D.; Raggio, G. A.; Verbeure, A. Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys., Tome 121 (1989) no. 2, pp. 271-282 http://projecteuclid.org/getRecord?id=euclid.cmp/1104178067 | MR 985399 | Zbl 0682.46054

[55] Pickl, P. A simple derivation of mean-field limits for quantum systems, Lett. Math. Phys., Tome 97 (2011) no. 2, pp. 151-164 | MR 2821235 | Zbl 1242.81150

[56] Raggio, G. A.; Werner, R. F. Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta, Tome 62 (1989) no. 8, pp. 980-1003 | MR 1034151 | Zbl 0938.82501

[57] Rodnianski, Igor; Schlein, Benjamin Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., Tome 291 (2009) no. 1, pp. 31-61 | Article | MR 2530155 | Zbl 1186.82051

[58] Seiringer, Robert The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., Tome 306 (2011) no. 2, pp. 565-578 | Article | MR 2824481 | Zbl 1226.82039

[59] Seiringer, Robert; Yngvason, Jakob; Zagrebnov, Valentin A Disordered Bose-Einstein condensates with interaction in one dimension, J. Stat. Mech., Tome 2012 (2012) no. 11, pp. P11007 http://stacks.iop.org/1742-5468/2012/i=11/a=P11007

[60] Solovej, Jan Philip Asymptotics for bosonic atoms, Lett. Math. Phys., Tome 20 (1990) no. 2, pp. 165-172 | Article | MR 1065245 | Zbl 0712.35075

[61] Solovej, Jan Philip Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys., Tome 266 (2006) no. 3, pp. 797-818 | MR 2238912 | Zbl 1126.82006

[62] Spohn, Herbert Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Modern Phys., Tome 52 (1980) no. 3, pp. 569-615 | MR 578142 | Zbl 0399.60082

[63] Størmer, Erling Symmetric states of infinite tensor products of C * -algebras, J. Functional Analysis, Tome 3 (1969), pp. 48-68 | MR 241992 | Zbl 0167.43403

[64] Sutherland, B. Quantum Many-Body Problem in One Dimension: Ground State, J. Mathematical Phys., Tome 12 (1971), pp. 246-250 | Article

[65] Sutherland, B. Quantum Many-Body Problem in One Dimension: Thermodynamics, J. Mathematical Phys., Tome 12 (1971), pp. 251-256 | Article

[66] Van Den Berg, M.; Lewis, J. T.; Pulé, J. V. The large deviation principle and some models of an interacting boson gas, Comm. Math. Phys., Tome 118 (1988) no. 1, pp. 61-85 http://projecteuclid.org/getRecord?id=euclid.cmp/1104161908 | MR 954675 | Zbl 0679.76124

[67] Werner, R. F. Large deviations and mean-field quantum systems, Quantum probability & related topics, World Sci. Publ., River Edge, NJ (QP-PQ, VII) (1992), pp. 349-381 | MR 1186674 | Zbl 0788.60126

[68] Yau, Horng-Tzer; Yin, Jun The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., Tome 136 (2009) no. 3, pp. 453-503 | Article | MR 2529681 | Zbl 1200.82002

[69] Yngvason, J. The interacting Bose gas: A continuing challenge, Phys. Particles Nuclei, Tome 41 (2010), pp. 880-884 | Article