Evolution by the vortex filament equation of curves with a corner
[Évolution par l’équation du tourbillon filamentaire de courbes à un coin]
Banica, Valeria
Journées équations aux dérivées partielles, (2013), p. 1-18 / Harvested from Numdam

Dans cet article de comptes rendus on présente une série de résultats sur la stabilité des solutions auto-similaires de l’équation du tourbillon filamentaire. Cette équation décrit un flot de courbes de 3 et est utilisée comme modèle pour l’évolution d’un tourbillon filamentaire dans un fluide. Le théorème principal donne, sous des hypothèses appropriées, l’existence et la description des solution engendrées par des courbes à un coin, sur temps positifs et négatifs. Le théorème compagnon décrit l’évolution des perturbations des solutions auto-similaires jusque’à formation d’une singularité en temps fini, et au-delà de ce temps. On va donner une esquisse des preuves. Ces résultats on été obtenus en collaboration avec Luis Vega.

In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in 3 and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations of self-similar solutions up to a singularity formation in finite time, and beyond this time. We shall give a sketch of the proof. These results were obtained in collaboration with Luis Vega.

Publié le : 2013-01-01
DOI : https://doi.org/10.5802/jedp.97
Classification:  76B47,  35Q35,  35Q55,  35B35,  35P25
@article{JEDP_2013____A1_0,
     author = {Banica, Valeria},
     title = {Evolution by the vortex filament equation of curves with a corner},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2013},
     pages = {1-18},
     doi = {10.5802/jedp.97},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2013____A1_0}
}
Banica, Valeria. Evolution by the vortex filament equation of curves with a corner. Journées équations aux dérivées partielles,  (2013), pp. 1-18. doi : 10.5802/jedp.97. http://gdmltest.u-ga.fr/item/JEDP_2013____A1_0/

[1] R.J. Arms and F.R. Hama, Localized-induction concept on a curved vortex and motion of an elliptic vortex ring, Phys. Fluids, (1965), 553.

[2] V. Banica and L. Vega, On the stability of a singular vortex dynamics, Comm. Math. Phys. 286 (2009), 593–627. | MR 2472037 | Zbl 1183.35029

[3] V. Banica and L. Vega, Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc. 14 (2012), 209–253. | MR 2862038 | Zbl pre05995802

[4] V. Banica and L. Vega, Stability of the self-similar dynamics of a vortex filament, to appear in Arch. Ration. Mech. Anal. | MR 3116002 | Zbl pre06260948

[5] V. Banica and L. Vega, The initial value problem for the binormal flow with rough data, ArXiv:1304.0996.

[6] J  Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156. | MR 1209299 | Zbl 0787.35097

[7] T. F. Buttke, A numerical study of superfluid turbulence in the Self Induction Approximation, J. of Compt. Physics 76 (1988), 301–326 | Zbl 0639.76136

[8] A. Calini and T. Ivey, Stability of Small-amplitude Torus Knot Solutions of the Localized Induction Approximation, J. Phys. A: Math. Theor. 44 (2011) 335204. | MR 2822117 | Zbl 1223.35286

[9] R. Carles, Geometric Optics and Long Range Scattering for One-Dimensional Nonlinear Schrödinger Equations, Comm. Math. Phys. 220 (2001), 41–67. | MR 1882399 | Zbl 1029.35211

[10] T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation, Non. Anal. TMA 14 (1990), 807–836. | MR 1055532 | Zbl 0706.35127

[11] M. Christ, J. Colliander, and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, ArXiv:0311048.

[12] L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo 22 (1906), 117.

[13] P. Germain, N. Masmoudi and J. Shatah, Global solutions for 2D quadratic Schrödinger equations, J. Math. Pures Appl. 97(2012), 505–543. | MR 2914945 | Zbl 1244.35134

[14] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II Scattering theory, general case, J. Funct. Anal. 32 (1979), 33–71. | MR 533219 | Zbl 0396.35029

[15] A. Grünrock, Bi- and trilinear Schr?dinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not. 41 (2005), 2525–2558. | MR 2181058 | Zbl 1088.35063

[16] S. Gustafson, K. Nakanishi, T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré 8 (2007), no. 7, 1303–1331. | MR 2360438 | Zbl pre05218113

[17] S. Gutiérrez, J. Rivas and L. Vega, Formation of singularities and self-similar vortex motion under the localized induction approximation, Comm. Part. Diff. Eq. 28 (2003), 927–968. | MR 1986056 | Zbl 1044.35089

[18] H. Hasimoto, A soliton in a vortex filament, J. Fluid Mech. 51 (1972), 477–485. | Zbl 0237.76010

[19] N. Hayashi and P. Naumkin, Domain and range of the modified wave operator for Schr?odinger equations with critical nonlinearity, Comm. Math. Phys. 267 (2006), 477–492. | MR 2249776 | Zbl 1113.81121

[20] E.J. Hopfinger, F.K. Browand, Vortex solitary waves in a rotating, turbulent flow, Nature 295, (1981), 393–395.

[21] F. de la Hoz, C. García-Cervera and L. Vega, A numerical study of the self-similar solutions of the Schrödinger Map, SIAM J. Appl. Math. 70 (2009), 1047–1077. | MR 2546352 | Zbl 1219.65139

[22] R. L. Jerrard and D. Smets, On Schrödinger maps from T 1 to S 2 , arXiv:1105.2736.

[23] R. L. Jerrard and D. Smets, On the motion of a curve by its binormal curvature, arXiv:1109.5483.

[24] C. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical non-linear dispersive equations, Duke Math. J. 106 (2001) 716–633. | MR 1813239 | Zbl 1034.35145

[25] N. Koiso, Vortex filament equation and semilinear Schrödinger equation, Nonlinear Waves, Hokkaido University Technical Report Series in Mathematics 43 (1996) 221–226. | Zbl 0968.35110

[26] S. Lafortune, Stability of solitons on vortex filaments, Phys. Lett. A bf 377 (2013), 766–769. | MR 3021944

[27] M. Lakshmanan and M. Daniel, On the evolution of higher dimensional Heisenberg continuum spin systems, Physica A (1981), 107, 533–552. | MR 624580

[28] M. Lakshmanan, T. W. Ruijgrok and C. J. Thompson, On the the dynamics of a continuum spin system, Physica A (1976), 84, 577–590. | MR 449262

[29] T. Levi-Civita, Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (1932), 229–250 | Numdam | Zbl 0004.37305

[30] T. Lipniacki, Quasi-static solutions for quantum vortex motion under the localized induction approximation, J. Fluid Mech. 477 (2002), 321–337. | MR 2011430 | Zbl 1063.76521

[31] F. Maggioni, S. Z. Alamri, C. F. Barenghi, and R. L. Ricca, Velocity, energy and helicity of vortex knots and unknots, Phys. Rev. E 82 (2010), 26309–26317. | MR 2736443

[32] A. Majda and A.  Bertozzi, Vorticity and incompressible flow., Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002. | MR 1867882 | Zbl 0983.76001

[33] K. Moriyama, S. Tonegawa and Y.  Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math. 5 (2003), 983–996 . | MR 2030566 | Zbl 1055.35112

[34] T. Nishiyama and A. Tani, Solvability of the localized induction equation for vortex motion, Comm. Math. Phys. 162 (1994), 433?-445. | MR 1277470 | Zbl 0811.35100

[35] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), 479–493. | MR 1121130 | Zbl 0742.35043

[36] C. S. Peskin and D. M. McQueen, Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets, Am. J. Physiol. 266 (Heart Circ. Physiol. 35) (1994), H319–H328.

[37] R. L. Ricca, The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics, Fluid Dynam. Res. 18 (1996), 245–268. | MR 1408546 | Zbl 1006.01505

[38] R.L. Ricca, Rediscovery of Da Rios equations, Nature 352 (1991), 561–562.

[39] K.W. Schwarz, Three-dimensional vortex dynamics in superfluid 4 He: Line-line and line-boundary interactions, Phys. Rev B 31 (1985), 5782–5804.

[40] A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions, Differ. Integral Equ. 17 (2004), 127–150. | MR 2035499 | Zbl 1164.35325

[41] A. Tani and T. Nishiyama, Solvability of equations for motion of a vortex filament with or without axial flow, Publ. Res. Inst. Math. Sci. 33 (1997), 509?-526. | MR 1489989 | Zbl 0905.35070

[42] A. Vargas and L. Vega, Global well-posedness for 1d non-linear Schrodinger equation for data with an infinite L 2 norm, J. Math. Pures Appl. 80 (2001), 1029–1044. | MR 1876762 | Zbl 1027.35134

[43] E.J. Vigmond, C. Clements, D.M. McQueen and C.S. Peskin, Effect of bundle branch block on cardiac output: A whole heart simulation study, Prog. Biophys. Mol. Biol. 97 (2008), 520–42.