Schrödinger maps
Tataru, Daniel
Journées équations aux dérivées partielles, (2012), p. 1-11 / Harvested from Numdam

The Schrödinger map equation is a geometric Schrödinger model, closely associated to the harmonic heat flow and to the wave map equation. The aim of these notes is to describe recent and ongoing work on this model, as well as a number of related open problems.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/jedp.92
@article{JEDP_2012____A9_0,
     author = {Tataru, Daniel},
     title = {Schr\"odinger maps},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2012},
     pages = {1-11},
     doi = {10.5802/jedp.92},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2012____A9_0}
}
Tataru, Daniel. Schrödinger maps. Journées équations aux dérivées partielles,  (2012), pp. 1-11. doi : 10.5802/jedp.92. http://gdmltest.u-ga.fr/item/JEDP_2012____A9_0/

[1] I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Global Schrödinger maps, Annals of Math., to appear

[2] I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Equivariant Schrödinger Maps in two spatial dimensions, preprint | MR 3090782 | Zbl pre06206217

[3] I. Bejenaru, D. Tataru, Near soliton evolution for equivariant Schrödinger Maps in two spatial dimensions, AMS Memoirs, to appear

[4] S. Gustafson, K. Nakanishi, T. Tsai, Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schroedinger maps on 2 ., preprint available on arxiv. | Zbl 1205.35294

[5] J. Krieger, W. Schlag Concentration compactness for critical wave maps, EMS Monographs in Mathematics, 2012 | MR 2895939 | Zbl pre06004782

[6] F. Merle, P. Raphaël, I. Rodnianski, Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, preprint. | MR 2783320

[7] Sterbenz, Jacob, Tataru, Daniel . Regularity of wave-maps in dimension 2+1. Comm. Math. Phys. 298 (2010), no. 1, 231–264. | MR 2657818 | Zbl 1218.35057

[8] Sterbenz, Jacob, Tataru, Daniel . Energy dispersed large data wave maps in 2+1 dimensions. Comm. Math. Phys. 298 (2010), no. 1, 139–230. | MR 2657817 | Zbl 1218.35129

[9] T. Tao, Gauges for the Schrödinger map, http://www.math.ucla.edu/ tao/preprints/Expository (unpublished).

[10] T. Tao. Global regularity of wave maps VII. Control of delocalised or dispersed solutions arXiv:0908.0776