Two Hartree-Fock models for the vacuum polarization
[Deux modèles de Hartree-Fock pour la polarisation du vide]
Gravejat, Philippe ; Hainzl, Christian ; Lewin, Mathieu ; Séré, Éric
Journées équations aux dérivées partielles, (2012), p. 1-31 / Harvested from Numdam

Nous présentons des résultats récents sur la dérivation et l’analyse de deux modèles de type Hartree-Fock pour la polarisation du vide. Nous portons une attention particulière à la construction variationnelle d’un vide polarisé auto-consistent, et à la pertinence physique de notre construction non perturbative vis-à-vis de la description perturbative donnée par l’électrodynamique quantique.

We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/jedp.87
Classification:  35Q41,  49S05,  81T16,  81V10
Mots clés: Polarisation du vide, mer de Dirac, approximation de type Hartree-Fock, modèle de Bogoliubov-Dirac-Fock, régularisation de Pauli-Villars, renormalisation de la charge, électrodynamique quantique
@article{JEDP_2012____A4_0,
     author = {Gravejat, Philippe and Hainzl, Christian and Lewin, Mathieu and S\'er\'e, \'Eric},
     title = {Two Hartree-Fock models for the vacuum polarization},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2012},
     pages = {1-31},
     doi = {10.5802/jedp.87},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2012____A4_0}
}
Gravejat, Philippe; Hainzl, Christian; Lewin, Mathieu; Séré, Éric. Two Hartree-Fock models for the vacuum polarization. Journées équations aux dérivées partielles,  (2012), pp. 1-31. doi : 10.5802/jedp.87. http://gdmltest.u-ga.fr/item/JEDP_2012____A4_0/

[1] Bach, V.; Barbaroux, J.-M.; Helffer, B.; Siedentop, H. On the stability of the relativistic electron-positron field, Commun. Math. Phys., Tome 201 (1999) no. 2, pp. 445-460 | MR 1682210 | Zbl 1024.81056

[2] Blackett, P.M.S.; Occhialini, G.P.S. Some photographs of the tracks of penetrating radiation, Proc. Roy. Soc. Lond. A, Tome 139 (1933), pp. 699-726

[3] Casimir, H.B.G. On the attraction between two perfectly conducting plates, Proc. Kon. Nederland. Akad. Wetensch., Tome 51 (1948) no. 7, pp. 793-795 | Zbl 0031.19005

[4] Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces, Phys. Rev., Tome 73 (1948) no. 4, pp. 360-372 | Zbl 0037.28103

[5] Chaix, P.; Iracane, D. From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism, J. Phys. B, Tome 22 (1989), pp. 3791-3814

[6] Chaix, P.; Iracane, D.; Lions, P.-L. From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation, J. Phys. B, Tome 22 (1989), pp. 3815-3828

[7] Dirac, P.A.M. The quantum theory of the electron, Proc. Roy. Soc. Lond. A, Tome 117 (1928), pp. 610-624

[8] Dirac, P.A.M. The quantum theory of the electron. II, Proc. Roy. Soc. Lond. A, Tome 118 (1928), pp. 351-361

[9] Dirac, P.A.M. A theory of electrons and protons, Proc. Roy. Soc. Lond. A, Tome 126 (1930), pp. 360-365

[10] Dyson, F.J. Advanced quantum mechanics, World Scientific, Hackensack, NJ (2007) (Translated by D. Derbes) | MR 2313112 | Zbl 1126.81003

[11] Engel, E.; Schwerdtfeger, P. Relativistic density functional theory: foundations and basic formalism, Relativistic electronic structure theory, part 1. Fundamentals, Elsevier, Amsterdam (Theoretical and computational chemistry) Tome 11 (2002), pp. 524-624

[12] Esteban, M.J.; Lewin, M.; Séré, É. Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc., Tome 45 (2008) no. 4, pp. 535-593 | MR 2434346 | Zbl pre05348713

[13] Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems, Zts. f. Phys., Tome 61 (1930) no. 1-2, pp. 126-148

[14] Furry, W.H. A symmetry theorem in the positron theory, Phys. Rev., Tome 51 (1937) no. 2, pp. 125-129 | Zbl 0015.42506

[15] Gabrielse, G.; Hanneke, D.; Kinoshita, T.; Nio, M.; Odom, B. New determination of the fine structure constant from the electron g value and QED, Phys. Rev. Lett., Tome 97 (2006) no. 3, pp. 030802

[16] Gravejat, P.; Hainzl, C.; Lewin, M.; Séré, É. Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields, Preprint (2012) | MR 3035987

[17] Gravejat, P.; Lewin, M.; Séré, É. Ground state and charge renormalization in a nonlinear model of relativistic atoms, Commun. Math. Phys., Tome 286 (2009) no. 1, pp. 179-215 | MR 2470929 | Zbl 1180.81155

[18] Gravejat, P.; Lewin, M.; Séré, É. Renormalization and asymptotic expansion of Dirac’s polarized vacuum, Commun. Math. Phys., Tome 306 (2011) no. 1, pp. 1-33 | MR 2819417 | Zbl 1221.81168

[19] Greiner, W.; Reinhardt, J. Quantum electrodynamics, Springer-Verlag, Berlin (2009) (Translated from the German) | MR 1321143 | Zbl 0803.00010

[20] Hainzl, C.; Lewin, M.; Séré, É. Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation, Commun. Math. Phys., Tome 257 (2005) no. 3, pp. 515-562 | MR 2164942 | Zbl 1115.81061

[21] Hainzl, C.; Lewin, M.; Séré, É. Self-consistent solution for the polarized vacuum in a no-photon QED model, J. Phys. A, Math. Gen., Tome 38 (2005) no. 20, pp. 4483-4499 | MR 2147635 | Zbl 1073.81677

[22] Hainzl, C.; Lewin, M.; Séré, É. Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics, Arch. Rat. Mech. Anal., Tome 192 (2009) no. 3, pp. 453-499 | MR 2505361 | Zbl 1173.81025

[23] Hainzl, C.; Lewin, M.; Séré, É.; Solovej, J.-P. A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics, Phys. Rev. A, Tome 76 (2007) no. 5, pp. 052104

[24] Hainzl, C.; Lewin, M.; Solovej, J.-P. The mean-field approximation in quantum electrodynamics. The no-photon case, Commun. Pure Appl. Math., Tome 60 (2007) no. 4, pp. 546-596 | MR 2290710 | Zbl 1113.81126

[25] Hartree, D. The wave-mechanics of an atom with a non-coulomb central field. Part I, Proc. Camb. Philos. Soc., Tome 24 (1928) no. 1, pp. 89-312

[26] Heisenberg, W. Bemerkungen zur diracschen theorie des positrons, Zts. f. Phys., Tome 90 (1934) no. 3, pp. 209-231 | Zbl 0010.04104

[27] Heisenberg, W.; Euler, H. Folgerungen aus der diracschen theorie des positrons, Zts. f. Phys., Tome 98 (1936) no. 11-12, pp. 714-732 | Zbl 0013.18503

[28] Hunziker, W.; Sigal, I.M. The quantum N-body problem, J. Math. Phys., Tome 41 (2000) no. 6, pp. 3348-3509 | MR 1768629 | Zbl 0981.81026

[29] Lamb, W.E.; Retherford, R.C. Fine structure of the hydrogen atom by a microwave method, Phys. Rev., Tome 72 (1947) no. 3, pp. 241-243

[30] Landau, L.D. On the quantum theory of fields. Bohr Volume, Pergamon Press, Oxford (1955) (Reprinted in Collected papers of L.D. Landau. Pergamon Press, Oxford, 1965) | MR 75092

[31] Landau, L.D.; Pomeranchuk, I.Y. On point interaction in quantum electrodynamics, Dokl. Akad. Nauk SSSR (N.S.), Tome 102 (1955), pp. 489-492 | MR 73476 | Zbl 0067.21602

[32] Lewin, M.; Exner, P. Renormalization of Dirac’s polarized vacuum, Mathematical results in quantum physics, World Scientific (Proceedings of the QMath11 Conference) (2011), pp. 45-59 | MR 2885159 | Zbl 1238.81101

[33] Lewin, M. A nonlinear variational problem in relativistic quantum mechanics, Proceeding of the sixth European Congress of Mathematics, European Mathematical Society (2013)

[34] Lieb, E.H. Variational principles for many-fermion systems, Phys. Rev. Lett., Tome 46 (1981) no. 7, pp. 457-459 | MR 601336

[35] Lieb, E.H. Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A, Tome 29 (1984) no. 6, pp. 3018-3028

[36] Mandelshtam, L.I.; Tamm, I.E. The uncertainty relation between energy and time in nonrelativistic quantum mechanics, J. of Phys. (USSR), Tome 9 (1945), pp. 249-254 | MR 15334 | Zbl 0060.45003

[37] Nenciu, G.; Scharf, G. On regular external fields in quantum electrodynamics, Helv. Phys. Acta, Tome 51 (1978) no. 3, pp. 412-424 | MR 507904

[38] Pauli, W.; Rose, M.E. Remarks on the polarization effects in the positron theory, Phys. Rev., Tome 49 (1936) no. 6, pp. 462-465

[39] Pauli, W.; Villars, F. On the invariant regularization in relativistic quantum theory, Rev. Modern Phys., Tome 21 (1949), pp. 434-444 | MR 32504 | Zbl 0037.12503

[40] Peskin, M.E.; Schroeder, D.V. An introduction to quantum field theory, Westview Press, New-York, Frontiers in Physics, Tome 94 (1995) | MR 1402248

[41] Reed, M.; Simon, B. Methods of modern mathematical physics IV. Analysis of operators, Academic Press, New-York, Texts and Monographs in Physics (1980) | MR 751959 | Zbl 0401.47001

[42] Sabin, J. Static electron-positron pair creation in strong fields for a nonlinear Dirac model, Preprint (2001)

[43] Schwinger, J. Quantum electrodynamics. I. A covariant formulation, Phys. Rev., Tome 74 (1948) no. 10, pp. 1439-1461 | MR 27714 | Zbl 0032.09404

[44] Serber, R. Linear modifications in the Maxwell field equations, Phys. Rev., Tome 48 (1935) no. 1, pp. 49-54

[45] Serber, R. A note on positron theory and proper energies, Phys. Rev., Tome 49 (1936) no. 7, pp. 545-550

[46] Solovej, J.-P. Proof of the ionization conjecture in a reduced Hartree-Fock model, Invent. Math., Tome 104 (1991) no. 2, pp. 291-311 | MR 1098611 | Zbl 0732.35066

[47] Solovej, J.-P. The ionization conjecture in Hartree-Fock theory, Annals of Math., Tome 158 (2003) no. 2, pp. 509-576 | MR 2018928 | Zbl 1106.81081

[48] Thaller, B. The Dirac equation, Springer-Verlag, Berlin, Texts and Monographs in Physics (1992) | MR 1219537 | Zbl 0765.47023

[49] Uehling, E.A. Polarization effects in the positron theory, Phys. Rev., Tome 48 (1935) no. 1, pp. 55-63 | Zbl 0012.13605