Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain
[Comportement asymptotique en temps des solutions de l’équation de Navier-Stokes dans un domaine extérieur du plan]
Gallay, Thierry
Journées équations aux dérivées partielles, (2012), p. 1-17 / Harvested from Numdam

Nous étudions le comportement asymptotique en temps des solutions de l’équation de Navier-Stokes incompressible dans un domaine extérieur du plan, avec condition de non-glissement à la frontière. Les données initiales que nous considérons sont des perturbations d’énergie finie d’un tourbillon régulier dont la circulation à l’infini est petite, mais nous n’imposons aucune autre restriction à leur taille. En utilisant une estimation d’énergie logarithmique et des arguments d’interpolation, nous montrons que la solution converge lorsque t vers un tourbillon d’Oseen autosimilaire. Ce résultat a été obtenu en collaboration avec Y. Maekawa (Université de Kobe).

We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as t. This result was obtained in collaboration with Y. Maekawa (Kobe University).

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/jedp.86
Classification:  35Q30,  35B35,  76D05,  76D17
Mots clés: Equation de Navier-Stokes, comportement asymptotique, domaine extérieur
@article{JEDP_2012____A3_0,
     author = {Gallay, Thierry},
     title = {Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2012},
     pages = {1-17},
     doi = {10.5802/jedp.86},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2012____A3_0}
}
Gallay, Thierry. Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain. Journées équations aux dérivées partielles,  (2012), pp. 1-17. doi : 10.5802/jedp.86. http://gdmltest.u-ga.fr/item/JEDP_2012____A3_0/

[1] Bae, H.; Jin, B. Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal., Tome 240 (2006) no. 2, pp. 508-529 | MR 2261693 | Zbl 1115.35095

[2] Bedrossian, J.; Masmoudi, N. Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in 2 with Measure-valued Initial Data (2012) (Preprint arXiv:1205.1551)

[3] Bergh, J.; Löfström, J. Interpolation spaces. An introduction, Springer-Verlag, Berlin (1976) (Grundlehren der Mathematischen Wissenschaften, No. 223) | MR 482275 | Zbl 0344.46071

[4] Borchers, W.; Miyakawa, T. L 2 -decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows, Arch. Rational Mech. Anal., Tome 118 (1992) no. 3, pp. 273-295 | MR 1158939 | Zbl 0756.76018

[5] Carpio, A. Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations, Tome 19 (1994) no. 5-6, pp. 827-872 | MR 1274542 | Zbl 0816.35108

[6] Constantin, P.; Foias, C. Navier-Stokes equations, University of Chicago Press, Chicago, IL, Chicago Lectures in Mathematics (1988) | MR 972259 | Zbl 0687.35071

[7] Dan, W.; Shibata, Y. On the L q L r estimates of the Stokes semigroup in a two-dimensional exterior domain, J. Math. Soc. Japan, Tome 51 (1999) no. 1, pp. 181-207 | MR 1661048 | Zbl 0924.35094

[8] Dan, W.; Shibata, Y. Remark on the L q -L estimate of the Stokes semigroup in a 2-dimensional exterior domain, Pacific J. Math., Tome 189 (1999) no. 2, pp. 223-239 | MR 1696121 | Zbl 0931.35021

[9] Fujita, H.; Kato, T. On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Tome 16 (1964), pp. 269-315 | MR 166499 | Zbl 0126.42301

[10] Galdi, G. P. An introduction to the mathematical theory of the Navier-Stokes equations, Springer, New York, Springer Monographs in Mathematics (2011) (Steady-state problems) | MR 2808162 | Zbl 1245.35002

[11] Gallagher, I.; Gallay, Th. Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann., Tome 332 (2005) no. 2, pp. 287-327 | MR 2178064 | Zbl 1096.35102

[12] Gallay, Th.; Maekawa, Y. Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity (2012) (Preprint arXiv:1202.4969) | MR 3092735 | Zbl pre06212819

[13] Gallay, Th.; Wayne, C. E. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys., Tome 255 (2005) no. 1, pp. 97-129 | MR 2123378 | Zbl 1139.35084

[14] Giga, Y.; Miyakawa, T.; Osada, H. Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., Tome 104 (1988) no. 3, pp. 223-250 | MR 1017289 | Zbl 0666.76052

[15] He, C.; Miyakawa, T. Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries, Indiana Univ. Math. J., Tome 55 (2006) no. 5, pp. 1483-1555 | MR 2270928 | Zbl 1122.35095

[16] He, C.; Miyakawa, T. On two-dimensional Navier-Stokes flows with rotational symmetries, Funkcial. Ekvac., Tome 49 (2006) no. 2, pp. 163-192 | MR 2271231 | Zbl 1179.35215

[17] Iftimie, D.; Lopes Filho, M.; Nussenzveig Lopes, H. Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations, Tome 28 (2003) no. 1-2, pp. 349-379 | MR 1974460 | Zbl 1094.76007

[18] Iftimie, G.; Karch, G.; Lacave, Ch. Self-similar asymptotics of solutions to the Navier-Stokes system in two dimensional exterior domain (2011) (Preprint arXiv:1107.2054)

[19] Kato, T.; Fujita, H. On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova, Tome 32 (1962), pp. 243-260 | Numdam | MR 142928 | Zbl 0114.05002

[20] Kozono, H. L 1 -solutions of the Navier-Stokes equations in exterior domains, Math. Ann., Tome 312 (1998) no. 2, pp. 319-340 | MR 1671800 | Zbl 0920.35108

[21] Kozono, H.; Ogawa, T. Decay properties of strong solutions for the Navier-Stokes equations in two-dimensional unbounded domains, Arch. Rational Mech. Anal., Tome 122 (1993) no. 1, pp. 1-17 | MR 1207238 | Zbl 0781.35053

[22] Kozono, H.; Ogawa, T. Two-dimensional Navier-Stokes flow in unbounded domains, Math. Ann., Tome 297 (1993) no. 1, pp. 1-31 | MR 1238405 | Zbl 0796.35129

[23] Kozono, H.; Yamazaki, M. Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space L n, , Houston J. Math., Tome 21 (1995) no. 4, pp. 755-799 | MR 1368344 | Zbl 0848.35099

[24] Ladyženskaja, O. A. Solution “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Comm. Pure Appl. Math., Tome 12 (1959), pp. 427-433 | MR 108962 | Zbl 0103.19502

[25] Leray, J. Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appliquées 9ème série, Tome 12 (1933), pp. 1-82 | Zbl 0006.16702

[26] Leray, J. Essai sur les mouvements plans d’un fluide visqueux que limitent des parois, J. Math. Pures Appliquées 9ème série, Tome 13 (1934), pp. 331-418

[27] Lions, J.-L.; Prodi, G. Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, Tome 248 (1959), pp. 3519-3521 | MR 108964 | Zbl 0091.42105

[28] Masuda, K. Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2), Tome 36 (1984) no. 4, pp. 623-646 | MR 767409 | Zbl 0568.35077