Formation of Singularities in Fluid Interfaces
Fefferman, Charles
Journées équations aux dérivées partielles, (2012), p. 1-9 / Harvested from Numdam
Publié le : 2012-01-01
DOI : https://doi.org/10.5802/jedp.85
@article{JEDP_2012____A2_0,
     author = {Fefferman, Charles},
     title = {Formation of Singularities in Fluid Interfaces},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2012},
     pages = {1-9},
     doi = {10.5802/jedp.85},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2012____A2_0}
}
Fefferman, Charles. Formation of Singularities in Fluid Interfaces. Journées équations aux dérivées partielles,  (2012), pp. 1-9. doi : 10.5802/jedp.85. http://gdmltest.u-ga.fr/item/JEDP_2012____A2_0/

[1] Alazard, T.; Burq, N.; Zuilly, C. On the water-wave equations with surface tension, Duke Math. J., Tome 158 no. 3, pp. 413-499 | MR 2805065 | Zbl 1258.35043

[2] Ambrose, D. M.; Masmoudi, N. The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math., Tome 58 no. 10, pp. 1287-1315 | MR 2162781 | Zbl 1086.76004

[3] Alvarez-Samaniego, B.; Lannes, D. Large time existence for 3D water waves and asympotics, Invent. Math., Tome 171 no. 3, pp. 485-541 | MR 2372806 | Zbl 1131.76012

[4] Bertozzi, A.; Constantin, P. Global regularity for vortex patches, Comm. Pure Appl. Math., Tome 152 no. 1, pp. 19-28 | MR 1207667 | Zbl 0771.76014

[5] Beale, J. T.; Hou, T. Y.; Lowengrub, J. Convergence of a boundary integral method for water waves, SIAM J. Numer. Anal., Tome 33 no. 5, pp. 1797-1843 | MR 1411850 | Zbl 0858.76046

[6] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F.; Gomez-Serrano, J. Finite time singularities for the free boundary incompressible Euler equations (preprint) | Zbl pre06220729

[7] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F.; Gomez-Serrano, J. Finite time singularities for water waves with surface tension (preprint)

[8] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F.; Lopez-Fernandez, M. Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Annals of Math., Tome 175, pp. 909-948 | MR 2993754 | Zbl 1267.76033

[9] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F. Breakdown of smoothness for the Muskat problem (preprint)

[10] Cordoba, A.; Cordoba, D.; Gancedo, F. Interface evolution: Water waves in 2D, Adv. Math., Tome 223 no. 1, pp. 120-173 | Zbl 1183.35276

[11] Constantin, P.; Cordoba, D.; Gancedo, F.; Strain, R. On the global existence for the Muskat problem, JEMS, Tome 15 no. 1, pp. 201-227 | Article | MR 2998834 | Zbl 1258.35002

[12] Cordoba, D.; Fontelos, M.; Mancho, A.; Rodrigo, J. L. Evidence of singularities for a family of contour dynamics equations, Proc. Nat. Acad. Sci. USA, Tome 102, pp. 5949-5952 | MR 2141918 | Zbl 1135.76315

[13] Cordoba, D.; Gancedo, F. Contour dynamics of incompressible 3D fluids in a porous medium with different densities, Comm. Math. Phys., Tome 273 no. 2, pp. 445-471 | MR 2318314 | Zbl 1120.76064

[14] Chemin, J. Y. Persistance de structures géometriques dans les fluides incompressibles bidimensionels, Ann. École Norm. Sup., Tome 26, pp. 1-16 | Numdam | MR 1235440 | Zbl 0779.76011

[15] Caflisch, R.; Howison, S.; Siegel, M. Global existence, singular solutions and ill-posedness for the Muskat problem, Comm. Pure Appl. Math, Tome 57, pp. 1374-1411 | MR 2070208 | Zbl 1062.35089

[16] Christodoulou, D.; Lindblad, H. On the motion of the free surface of a liquid, Comm. Pure Appl. Math., Tome 53 no. 12, pp. 1536-1602 | MR 1780703 | Zbl 1031.35116

[17] Constantin, P.; Pugh, M. Global solutions for small data to the Hele-Shaw problem, Nonlinearity, Tome 6, pp. 393-415 | MR 1223740 | Zbl 0808.35104

[18] Coutand, D.; Shkoller, S. On the finite-time splash singularity for the 3D free surface Euler equqations ((preprint))

[19] Coutand, D.; Shkoller, S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Tome 20 no. 3, pp. 829-930 | MR 2291920 | Zbl 1123.35038

[20] Escher, J.; Matioc, B-V. On the parabolicity of the Muskat problem: Well-posedness, fingering and stability results, Z. Annal. Awend, Tome 30, pp. 193-218 | MR 2793001 | Zbl 1223.35199

[21] Gancedo, F. Existence for the α-patch model and the QG sharp front in Sobolev spaces, Adv. Math., Tome 217, pp. 2569-2598 | MR 2397460 | Zbl 1148.35099

[22] Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3, Annals of Math. | Zbl 1241.35003

[23] Lannes, D. Well-posedness of the water-waves equation, J. Amer. Math. Soc., Tome 18 no. 3, pp. 605-654 | MR 2138139 | Zbl 1069.35056

[24] Lindblad, H. Well-posedness for the motion of an incompressible liquid with free surface boundary, Annals of Math., Tome 162, pp. 109-194 | MR 2178961 | Zbl 1095.35021

[25] Rodrigo, J. On the evolution of sharp fronts for the quasigeostrophic equation, Comm. Pure Appl. Math., Tome 58 no. 6, pp. 821-866 | MR 2142632 | Zbl 1073.35006

[26] Shatah, J.; Zeng, C. Geometry and a-priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math, Tome 61 no. 5, pp. 698-744 | MR 2388661 | Zbl 1174.76001

[27] Wu, S. Almost global well-posedness of the 2D full water wave problem, Invent. Math., Tome 177 no. 1, pp. 45-135 | Zbl 1181.35205

[28] Wu, S. Global well-posedness of the 3D full water-wave problem, Invent. Math., Tome 184 no. 1, pp. 125-220 | Zbl 1221.35304

[29] Wu, S. Well-posedness in Sobolev spaces of the full water-wave problem in 2D, Invent. Math., Tome 177, pp. 39-72 | MR 1471885 | Zbl 0892.76009

[30] Wu, S. Well-posedness in Sobolev spaces of the full water-wave problem in 3D, J. Amer. Math. Soc., Tome 12 no. 2, pp. 445-495 | MR 1641609 | Zbl 0921.76017

[31] Yi, F. Global classical solution of Muskat free boundary problem, J. Math. Anal. Appl., Tome 288, pp. 442-461 | MR 2019452 | Zbl 1038.35083

[32] Zhang, P.; Zhang, Z. On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math, Tome 61, pp. 877-940 | MR 2410409 | Zbl 1158.35107