@article{JEDP_2012____A2_0, author = {Fefferman, Charles}, title = {Formation of Singularities in Fluid Interfaces}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2012}, pages = {1-9}, doi = {10.5802/jedp.85}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2012____A2_0} }
Fefferman, Charles. Formation of Singularities in Fluid Interfaces. Journées équations aux dérivées partielles, (2012), pp. 1-9. doi : 10.5802/jedp.85. http://gdmltest.u-ga.fr/item/JEDP_2012____A2_0/
[1] On the water-wave equations with surface tension, Duke Math. J., Tome 158 no. 3, pp. 413-499 | MR 2805065 | Zbl 1258.35043
[2] The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math., Tome 58 no. 10, pp. 1287-1315 | MR 2162781 | Zbl 1086.76004
[3] Large time existence for 3D water waves and asympotics, Invent. Math., Tome 171 no. 3, pp. 485-541 | MR 2372806 | Zbl 1131.76012
[4] Global regularity for vortex patches, Comm. Pure Appl. Math., Tome 152 no. 1, pp. 19-28 | MR 1207667 | Zbl 0771.76014
[5] Convergence of a boundary integral method for water waves, SIAM J. Numer. Anal., Tome 33 no. 5, pp. 1797-1843 | MR 1411850 | Zbl 0858.76046
[6] Finite time singularities for the free boundary incompressible Euler equations (preprint) | Zbl pre06220729
[7] Finite time singularities for water waves with surface tension (preprint)
[8] Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Annals of Math., Tome 175, pp. 909-948 | MR 2993754 | Zbl 1267.76033
[9] Breakdown of smoothness for the Muskat problem (preprint)
[10] Interface evolution: Water waves in 2D, Adv. Math., Tome 223 no. 1, pp. 120-173 | Zbl 1183.35276
[11] On the global existence for the Muskat problem, JEMS, Tome 15 no. 1, pp. 201-227 | Article | MR 2998834 | Zbl 1258.35002
[12] Evidence of singularities for a family of contour dynamics equations, Proc. Nat. Acad. Sci. USA, Tome 102, pp. 5949-5952 | MR 2141918 | Zbl 1135.76315
[13] Contour dynamics of incompressible 3D fluids in a porous medium with different densities, Comm. Math. Phys., Tome 273 no. 2, pp. 445-471 | MR 2318314 | Zbl 1120.76064
[14] Persistance de structures géometriques dans les fluides incompressibles bidimensionels, Ann. École Norm. Sup., Tome 26, pp. 1-16 | Numdam | MR 1235440 | Zbl 0779.76011
[15] Global existence, singular solutions and ill-posedness for the Muskat problem, Comm. Pure Appl. Math, Tome 57, pp. 1374-1411 | MR 2070208 | Zbl 1062.35089
[16] On the motion of the free surface of a liquid, Comm. Pure Appl. Math., Tome 53 no. 12, pp. 1536-1602 | MR 1780703 | Zbl 1031.35116
[17] Global solutions for small data to the Hele-Shaw problem, Nonlinearity, Tome 6, pp. 393-415 | MR 1223740 | Zbl 0808.35104
[18] On the finite-time splash singularity for the 3D free surface Euler equqations ((preprint))
[19] Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Tome 20 no. 3, pp. 829-930 | MR 2291920 | Zbl 1123.35038
[20] On the parabolicity of the Muskat problem: Well-posedness, fingering and stability results, Z. Annal. Awend, Tome 30, pp. 193-218 | MR 2793001 | Zbl 1223.35199
[21] Existence for the -patch model and the sharp front in Sobolev spaces, Adv. Math., Tome 217, pp. 2569-2598 | MR 2397460 | Zbl 1148.35099
[22] Global solutions for the gravity water waves equation in dimension 3, Annals of Math. | Zbl 1241.35003
[23] Well-posedness of the water-waves equation, J. Amer. Math. Soc., Tome 18 no. 3, pp. 605-654 | MR 2138139 | Zbl 1069.35056
[24] Well-posedness for the motion of an incompressible liquid with free surface boundary, Annals of Math., Tome 162, pp. 109-194 | MR 2178961 | Zbl 1095.35021
[25] On the evolution of sharp fronts for the quasigeostrophic equation, Comm. Pure Appl. Math., Tome 58 no. 6, pp. 821-866 | MR 2142632 | Zbl 1073.35006
[26] Geometry and a-priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math, Tome 61 no. 5, pp. 698-744 | MR 2388661 | Zbl 1174.76001
[27] Almost global well-posedness of the 2D full water wave problem, Invent. Math., Tome 177 no. 1, pp. 45-135 | Zbl 1181.35205
[28] Global well-posedness of the 3D full water-wave problem, Invent. Math., Tome 184 no. 1, pp. 125-220 | Zbl 1221.35304
[29] Well-posedness in Sobolev spaces of the full water-wave problem in 2D, Invent. Math., Tome 177, pp. 39-72 | MR 1471885 | Zbl 0892.76009
[30] Well-posedness in Sobolev spaces of the full water-wave problem in 3D, J. Amer. Math. Soc., Tome 12 no. 2, pp. 445-495 | MR 1641609 | Zbl 0921.76017
[31] Global classical solution of Muskat free boundary problem, J. Math. Anal. Appl., Tome 288, pp. 442-461 | MR 2019452 | Zbl 1038.35083
[32] On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math, Tome 61, pp. 877-940 | MR 2410409 | Zbl 1158.35107