We present some results obtained in collaboration with prof. Piero D’Ancona concerning global existence for the 3D cubic non linear massless Dirac equation with a potential for small initial data in with slight additional assumptions. The new crucial tool is given by the proof of some refined endpoint Strichartz estimates.
@article{JEDP_2012____A1_0, author = {Cacciafesta, Federico}, title = {The cubic nonlinear Dirac equation}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2012}, pages = {1-10}, doi = {10.5802/jedp.84}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2012____A1_0} }
Cacciafesta, Federico. The cubic nonlinear Dirac equation. Journées équations aux dérivées partielles, (2012), pp. 1-10. doi : 10.5802/jedp.84. http://gdmltest.u-ga.fr/item/JEDP_2012____A1_0/
[1] Federico Cacciafesta. Global small solutions to the critical radial Dirac equation with potential. Nonlinear Analysis, 74 (2011), pp. 6060-6073. | MR 2833377 | Zbl 1230.35111
[2] Federico Cacciafesta and Piero D’Ancona. Endpoint estimates and global existence for the nonlinear Dirac equation with a potential. http://arxiv.org/abs/1103.4014. | Zbl 1260.35159
[3] João-Paulo Dias and Mário Figueira. Global existence of solutions with small initial data in for the massive nonlinear Dirac equations in three space dimensions. Boll. Un. Mat. Ital. B (7), 1(3):861–874, 1987. | MR 916298 | Zbl 0637.35014
[4] Miguel Escobedo and Luis Vega. A semilinear Dirac equation in for . SIAM J. Math. Anal., 28(2):338–362, 1997. | MR 1434039 | Zbl 0877.35028
[5] Daoyuan Fang and Chengbo Wang. Some remarks on Strichartz estimates for homogeneous wave equation. Nonlinear Anal., 65(3):697–706, 2006. | MR 2231083 | Zbl 1096.35026
[6] Daoyuan Fang and Chengbo Wang. Weighted Strichartz estimates with angular regularity and their applications. 2008. | Zbl 1226.35008
[7] Chengbo Wang Jin-Cheng Jiang and Xin Yu. Generalized and weighted strichartz estimates. 2010. | Zbl 1264.35011
[8] Sergiu Klainerman and Matei Machedon. Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math., 46(9):1221–1268, 1993. | MR 1231427 | Zbl 0803.35095
[9] Shuji Machihara, Makoto Nakamura, Kenji Nakanishi, and Tohru Ozawa. Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal., 219(1):1–20, 2005. | MR 2108356 | Zbl 1060.35025
[10] Shuji Machihara, Makoto Nakamura, and Tohru Ozawa. Small global solutions for nonlinear Dirac equations. Differential Integral Equations, 17(5-6):623–636, 2004. | MR 2054938 | Zbl 1174.35452
[11] Yves Moreau. Existence de solutions avec petite donnée initiale dans pour une équation de Dirac non linéaire. Portugal. Math., 46(suppl.):553–565, 1989. Workshop on Hyperbolic Systems and Mathematical Physics (Lisbon, 1988). | MR 1080773 | Zbl 0734.35097
[12] Branko Najman. The nonrelativistic limit of the nonlinear Dirac equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 9(1):3–12, 1992. | Numdam | MR 1151464 | Zbl 0746.35036
[13] Michael Reed. Abstract non-linear wave equations. Lecture Notes in Mathematics, Vol. 507. Springer-Verlag, Berlin, 1976. | MR 605679 | Zbl 0317.35002
[14] Jacob Sterbenz Angular regularity and Strichartz estimates for the wave equation. Int. Math. Res. Not. 2005, no. 4, 187Ð231. | MR 2128434 | Zbl 1072.35048
[15] Bernd Thaller. The Dirac equation. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992. | MR 1219537 | Zbl 0765.47023