Effective Evolution Equations in Quantum Physics
Schlein, Benjamin
Journées équations aux dérivées partielles, (2011), p. 1-19 / Harvested from Numdam

In these notes, we review some recent mathematical results concerning the derivation of effective evolution equations from many body quantum mechanics. In particular, we discuss the emergence of the Hartree equation in the so-called mean field regime (for example, for systems of gravitating bosons), and we show that the Gross-Pitaevskii equation approximates the dynamics of initially trapped Bose-Einstein condensates. We explain how effective evolution equations can be derived, on the one hand, by analyzing the so called BBGKY hierarchy, describing the time-evolution of reduced density matrices, and, on the other hand, by studying the dynamics of coherent initial states in a Fock-space representation of the many body system.

Publié le : 2011-01-01
DOI : https://doi.org/10.5802/jedp.83
@article{JEDP_2011____A11_0,
     author = {Schlein, Benjamin},
     title = {Effective Evolution Equations in Quantum Physics},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2011},
     pages = {1-19},
     doi = {10.5802/jedp.83},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2011____A11_0}
}
Schlein, Benjamin. Effective Evolution Equations in Quantum Physics. Journées équations aux dérivées partielles,  (2011), pp. 1-19. doi : 10.5802/jedp.83. http://gdmltest.u-ga.fr/item/JEDP_2011____A11_0/

[1] C. Bardos, F. Golse, N. Mauser: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 7 (2000), 275–293. | MR 1869286 | Zbl 1003.81027

[2] L. Chen, J.O. Lee, B. Schlein: Rate of convergence towards Hartree dynamics. To appear in J. Stat. Phys. Preprint arxiv:1103.0948. | MR 2826623

[3] X. Chen: Second order corrections to mean field evolution for weakly interacting bosons in the case of 3-body interactions. Preprint arxiv:1011.5997.

[4] T. Chen, N. Pavlović: On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discrete Contin. Dyn. Syst., 27 (2010), no. 2, 715–739. | MR 2600687 | Zbl 1190.35207

[5] T. Chen, N. Pavlović: The quintic NLS as the mean field limit of a boson gas with three-body interactions. J. of Funct. Anal., 260 (2011), no. 4, 959–997. | MR 2747009 | Zbl 1213.35368

[6] A. Elgart, B. Schlein: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60 (2007), no. 4, 500–545. | MR 2290709 | Zbl 1113.81032

[7] L. Erdős, B. Schlein, H.-T. Yau: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167 (2007), 515–614. | MR 2276262 | Zbl 1123.35066

[8] L. Erdős, B. Schlein, H.-T. Yau: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. 172 (2010), 291–370. | MR 2680421 | Zbl 1204.82028

[9] L. Erdős, B. Schlein, H.-T. Yau: Rigorous derivation of the Gross-Pitaevskii equation. Phys. Rev Lett. 98 (2007), no. 4, 040404.

[10] L. Erdős, B. Schlein, H.-T. Yau: Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22 (2009), 1099–1156. | MR 2525781 | Zbl 1207.82031

[11] L. Erdős, H.-T. Yau: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5 (2001), no. 6, 1169–1205. | MR 1926667 | Zbl 1014.81063

[12] J. Fröhich, E. Lenzmann: Blowup for nonlinear wave equations describing bosons stars. Comm. Pure Appl. Math. 60 (2007), no. 11, 1691–1705. | MR 2349352 | Zbl 1135.35011

[13] J. Ginibre, G. Velo: The classical field limit of scattering theory for nonrelativistic many-boson systems. I.-II. Comm. Math. Phys. 66 (1979), no. 1, 37–76, and 68 (1979), no. 1, 45–68. | MR 530915 | Zbl 0443.35068

[14] M. Grillakis, M. Machedon, D. Margetis: Second-order corrections to mean field evolution for weakly interacting bosons. Comm. Math. Phys. 294 (2010), no. 1, 273-301 | MR 2575484 | Zbl 1208.82030

[15] M. Grillakis, M. Machedon, D. Margetis: Second-order corrections to mean-field evolution of weakly interacting Bosons, II. Preprint arXiv:1003.4713. | MR 2824569 | Zbl pre05949119

[16] K. Hepp: The classical limit for quantum mechanical correlation functions. Comm. Math. Phys. 35 (1974), 265–277. | MR 332046

[17] K. Kirkpatrick, B. Schlein, G. Staffilani: Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Amer. J. Math. 133 (2011), no. 1, 91-130. | MR 2752936 | Zbl 1208.81080

[18] S. Klainerman, M. Machedon: On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Comm. Math. Phys. 279 (2008), no. 1, 169-185. | MR 2377632 | Zbl 1147.37034

[19] A. Knowles, P. Pickl: Mean-field dynamics: singular potentials and rate of convergence. Comm. Math. Phys. 298, 101–138 (2010). | MR 2657816 | Zbl 1213.81180

[20] E. Lenzmann: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 10 (2007), no. 1, 43–64 | MR 2340532 | Zbl 1171.35474

[21] E. H. Lieb, R. Seiringer: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88 (2002), 170409-1-4.

[22] E. H. Lieb, R. Seiringer, J. Yngvason: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev A 61 (2000), 043602.

[23] E. H. Lieb, H.-T. Yau: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112 (1987), no. 1, 147–174. | MR 904142 | Zbl 0641.35065

[24] A. Michelangeli, B. Schlein: Dynamical Collapse of Boson Stars. To appear in Comm. Math. Phys. Preprint arXiv:1005.3135.

[25] P. Pickl: A simple derivation of mean field limits for quantum systems. Preprint arXiv:0907.4464. | MR 2821235

[26] P. Pickl: Derivation of the time dependent Gross Pitaevskii equation with external fields. Preprint arXiv:1001.4894

[27] I. Rodnianski, B. Schlein: Quantum fluctuations and rate of convergence towards mean field dynamics. Comm. Math. Phys. 291, 31–61 (2009). | MR 2530155 | Zbl 1186.82051

[28] H. Spohn: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52, 569–615 (1980), no. 3. | MR 578142 | Zbl 0399.60082