Hypoelliptic estimates for some linear diffusive kinetic equations
Hérau, Frédéric
Journées équations aux dérivées partielles, (2010), p. 1-13 / Harvested from Numdam

This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations, we establish optimal global hypoelliptic estimates with loss of 4/3 derivatives in a Sobolev scale exactly related to the anisotropy of the diffusion.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/jedp.66
Classification:  35H10,  35H20,  35B65,  82C40
@article{JEDP_2010____A9_0,
     author = {H\'erau, Fr\'ed\'eric},
     title = {Hypoelliptic estimates for some linear diffusive kinetic equations},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2010},
     pages = {1-13},
     doi = {10.5802/jedp.66},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2010____A9_0}
}
Hérau, Frédéric. Hypoelliptic estimates for some linear diffusive kinetic equations. Journées équations aux dérivées partielles,  (2010), pp. 1-13. doi : 10.5802/jedp.66. http://gdmltest.u-ga.fr/item/JEDP_2010____A9_0/

[1] R. Alexandre, Y. Morimoto, S. Ukai, C-J. Xu, T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal. 255, no. 8, 2013-2066 (2008). | MR 2462585 | Zbl 1166.35038

[2] R. Alexandre, Y. Morimoto, S. Ukai, C-J. Xu, T. Yang, The Boltzmann equation without angular cutoff. Global existence and full regularity of the Boltzmann equation without angular cutoff. Part I : Maxwellian case and small singularity, preprint (2009), http://arxiv.org/abs/0912.1426

[3] P. Bolley, J. Camus, J. Nourrigat, La condition de Hörmander-Kohn pour les opérateurs pseudo-différentiels, Comm. Partial Differential Equations, 7, no. 2, 197-221 (1982). | MR 646136 | Zbl 0497.35086

[4] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9) 81, no. 11, 1135-1159 (2002). | MR 1949176 | Zbl 1045.35093

[5] H. Chen, W-X. Li, C-J. Xu, Propagation of Gevrey regularity for solutions of Landau equations, Kinet. Relat. Models, 1, no.3, 355-368 (2008). | MR 2425602 | Zbl 1157.35328

[6] H. Chen, W-X. Li, C-J. Xu, Gevrey regularity for solution of the spatially homogeneous Landau equation, Acta Math. Sci. Ser. B Engl. Ed. 29, no. 3, 673-686 (2009). | MR 2514370 | Zbl pre05732986

[7] H. Chen, W-X. Li, C-J. Xu, Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations, J. Differential Equations, 246, no. 1, 320-339 (2009). | MR 2467026 | Zbl 1162.35016

[8] J-P. Eckmann, M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235, no. 2, 233-253 (2003). | MR 1969727 | Zbl 1040.35016

[9] C. Fefferman, D.H. Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34, no. 3, 285-331 (1981). | MR 611747 | Zbl 0458.35099

[10] Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231, no. 3, 391-434 (2002). | MR 1946444 | Zbl 1042.76053

[11] B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag, Berlin (2005). | MR 2130405 | Zbl 1072.35006

[12] F. Hérau, F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171, no. 2, 151-218 (2004). | MR 2034753 | Zbl 1139.82323

[13] F. Hérau, K. Pravda-Starov, Anisotropic hypoelliptic estimates for Landau-type operators, submitted (2010).

[14] F. Hérau, J. Sjöstrand, C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations, 30, no. 4-6, 689-760 (2005). | MR 2153513 | Zbl 1083.35149

[15] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119, 147-171 (1967). | MR 222474 | Zbl 0156.10701

[16] L. Hörmander, The analysis of linear partial differential operators, vol. I-IV, Springer-Verlag (1985).

[17] J.J. Kohn, Pseudodifferential operators and hypoellipticity, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 61-69, Amer. Math. Soc., Providence, R.I. (1973). | MR 338592 | Zbl 0262.35007

[18] N. Lerner, The Wick calculus of pseudo-differential operators and some of its applications, Cubo Mat. Educ. 5, no. 1, 213-236 (2003). | MR 1957713 | Zbl pre05508173

[19] N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators, Theory and Applications, Vol. 3, Birkhäuser (2010). | MR 2599384 | Zbl 1186.47001

[20] C. Mouhot, L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19, no. 4, 969-998 (2006). | MR 2214953 | Zbl 1169.82306

[21] Y. Morimoto, C-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ. 47, no. 1, 129-152 (2007). | MR 2359105 | Zbl 1146.35027

[22] Y. Morimoto, C-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247, no. 2, 596-617 (2009). | MR 2523694 | Zbl 1175.35024

[23] K. Pravda-Starov, Subelliptic estimates for quadratic differential operators, to appear in American Journal of Mathematics (2010), http://arxiv.org/abs/0809.0186

[24] L.P. Rothschild, E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137, no. 3-4, 247-320 (1976). | MR 436223 | Zbl 0346.35030

[25] C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, 71-305, North-Holland, Amsterdam (2002). | MR 1942465 | Zbl 1170.82369

[26] C-J. Xu, Fourier analysis of non-cutoff Boltzmann equations, Lectures on the Analysis of Nonlinear Partial Differential Equations, Vol. 1, Morningside Lectures in Mathematics, Higher Education Press and International Press Beijing-Boston, 585-197 (2009).