We study a class of third order hyperbolic operators in with triple characteristics on . We consider the case when the fundamental matrix of the principal symbol for has a couple of non vanishing real eigenvalues and is strictly hyperbolic for We prove that is strongly hyperbolic, that is the Cauchy problem for is well posed in for any lower order terms .
@article{JEDP_2010____A4_0, author = {Bernardi, Enrico and Bove, Antonio and Petkov, Vesselin}, title = {Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2010}, pages = {1-13}, doi = {10.5802/jedp.61}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2010____A4_0} }
Bernardi, Enrico; Bove, Antonio; Petkov, Vesselin. Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity. Journées équations aux dérivées partielles, (2010), pp. 1-13. doi : 10.5802/jedp.61. http://gdmltest.u-ga.fr/item/JEDP_2010____A4_0/
[1] E. Bernardi, A. Bove, V. Petkov, The Cauchy problem for effectively hyperbolic operators with triple characteristics, in preparation.
[2] J. M. Bony, Sur l’inégalité de Fefferman-Phong, Séminaire EDP, Ecole Polytechnique, 1998-1999. | Numdam | MR 1721321
[3] J. Chazarain, Opérateurs hyperboliques à caractéristiques de multiplicité constante, Ann. Institut Fourier (Grenoble), 24 (1974), 173-202. | Numdam | MR 390512 | Zbl 0274.35045
[4] H. Flashka and G. Strang, The correctness of the Cauchy problem, Adv. in Math. 6 (1971), 347-379. | MR 279425 | Zbl 0213.37304
[5] L. Hörmander, Cauchy problem for differential operators with double characteristics, J. Analyse Math. 32 (1977), 118-196. | MR 492751 | Zbl 0367.35054
[6] L. Hörmander, Analysis of Linear Partial Differential Operators, III, Springer-Verlag, 1985, Berlin. | MR 781536 | Zbl 0601.35001
[7] V. Ja. Ivrii and V. M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperboilic equations to be well posed, Uspehi Mat. Nauk, 29: 5 (1974), 1-70 (in Russian), English translation: Russian Math. Surveys, 29:5 (1974), 3-70. | MR 427843 | Zbl 0312.35049
[8] V. Ivrii, Sufficient conditions for regular and completely regular hyperbolicity, Trudy Moskov Mat. Obsc.,33 (1976), 3-66 (in Russian), English translation: Trans. Moscow Math. Soc. 1 (1978), 165. | MR 492904 | Zbl 0376.35038
[9] N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (a standard type), Publ. RIMS Kyoto Univ. 20 (1984), 551-592. | MR 759681
[10] N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (general case), J. Math. Kyoto Univ. 25 (1985), 727-743. | MR 810976 | Zbl 0613.35046
[11] R. Melrose, The Cauchy problem for effectively hyperbolic operators, Hokkaido Math. J. 12 (1983), 371-391. | MR 725587 | Zbl 0544.35094
[12] T. Nishitani, Local energy integrals for effectively hyperbolic operators, I, II, J. Math. Kyoto Univ. 24 (1984), 623-658 and 659-666. | MR 775976 | Zbl 0589.35078
[13] T. Nishitani, The effectively Cauchy problem in The Hyperbolic Cauchy Problem, Lecture Notes in Mathematics, 1505, Springer-Verlag, 1991, pp. 71-167. | MR 1166190
[14] O. A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math. 23 (1970), 569-586. | MR 264227
[15] M. R. Spiegel, J. Liu, Mathematical handbook of formulas and tables, McGraw-Hill, Second Edition, 1999.