We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure for the geodesic flow is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the Journées EDP (Port d’Albret-June, 7-11 2010))
@article{JEDP_2010____A15_0, author = {Rivi\`ere, Gabriel}, title = {Entropy of eigenfunctions of the Laplacian in dimension 2}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2010}, pages = {1-17}, doi = {10.5802/jedp.72}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2010____A15_0} }
Rivière, Gabriel. Entropy of eigenfunctions of the Laplacian in dimension 2. Journées équations aux dérivées partielles, (2010), pp. 1-17. doi : 10.5802/jedp.72. http://gdmltest.u-ga.fr/item/JEDP_2010____A15_0/
[1] L.M. Abramov On the entropy of a flow, Translations of AMS , 167-170 (1966) | Zbl 0185.21803
[2] N. Anantharaman Entropy and the localization of eigenfunctions, Ann. of Math. , 435-475 (2008) | MR 2434883 | Zbl 1175.35036
[3] N. Anantharaman, H. Koch, S. Nonnenmacher Entropy of eigenfunctions, arXiv:0704.1564, International Congress of Mathematical Physics (2007) | Zbl 1175.81118
[4] N. Anantharaman, S. Nonnenmacher Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier , 2465-2523 (2007) | Numdam | MR 2394549 | Zbl 1145.81033
[5] D. Bambusi, S. Graffi, T. Paul Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymp. Analysis , 149-160 (1999) | MR 1723551 | Zbl 0934.35142
[6] L. Barreira, Y. Pesin Lectures on Lyapunov exponents and smooth ergodic theory, Proc. of Symposia in Pure Math. , 3-89 (2001) | MR 1858534 | Zbl 0996.37001
[7] A. Bouzouina, S. de Bièvre Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. in Math. Phys. , 83-105 (1996) | MR 1387942 | Zbl 0876.58041
[8] A. Bouzouina, D. Robert Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. Jour. , 223-252 (2002) | MR 1882134 | Zbl 1069.35061
[9] N. Burq Mesures semi-classiques et mesures de défaut (d’après P.Gérard, L.Tartar et al.) Astérisque , séminaire Bourbaki, 167-196 (1997) | Numdam | MR 1627111 | Zbl 0954.35102
[10] Y. Colin de Verdière Ergodicité et fonctions propres du Laplacien, Comm. in Math. Phys. , 497-502 (1985) | MR 818831 | Zbl 0592.58050
[11] M. Denker, C. Grillenberger, K. Sigmund Ergodic Theory on Compact Spaces, Springer, Berlin-Heidelberg-New-York (1976) | MR 457675 | Zbl 0328.28008
[12] M. Dimassi, J. Sjöstrand Spectral Asymptotics in the Semiclassical Limit Cambridge University Press (1999) | MR 1735654 | Zbl 0926.35002
[13] F. Faure, S. Nonnenmacher, S. de Bièvre Scarred eigenstates for quantum cat maps of minimal periods, Comm. in Math. Phys. , 449-492 (2003) | MR 2000926 | Zbl 1033.81024
[14] B. Gutkin Entropic bounds on semiclassical measures for quantized one-dimensional maps, Comm. Math. Physics , 303-342 (2010) | MR 2579457
[15] B. Hasselblatt, A. B. Katok Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its applications Cambridge University Press (1995) | MR 1326374 | Zbl 0878.58020
[16] D. Kelmer Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, Ann. of Math. 815-879 (2010) | MR 2630057 | Zbl pre05712745
[17] F. Ledrappier, L.-S. Young The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. , 509-539 (1985) | MR 819556 | Zbl 0605.58028
[18] H. Maassen, J.B. Uffink Generalized entropic uncertainty relations, Phys. Rev. Lett. , 1103-1106 (1988) | MR 932170
[19] G. Rivière Entropy of semiclassical measures in dimension 2, to appear in Duke Math. Jour., hal-00315799 (2008)
[20] G. Rivière Entropy of semiclassical measures for nonpositively curved surfaces, hal-00430591 (2009)
[21] Z. Rudnick, P. Sarnak The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. in Math. Phys. , 195-213 (1994) | MR 1266075 | Zbl 0836.58043
[22] D. Ruelle An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat. , 83-87 (1978) | MR 516310 | Zbl 0432.58013
[23] R. O. Ruggiero Dynamics and global geometry of manifolds without conjugate points, Ensaios Mate. , Soc. Bras. Mate. (2007) | MR 2304843 | Zbl 1133.37009
[24] A. Shnirelman Ergodic properties of eigenfunctions, Usp. Math. Nauk. , 181-182 (1974) | MR 402834 | Zbl 0324.58020
[25] P. Walters An introduction to ergodic theory, Springer-Verlag, Berlin, New York (1982) | MR 648108 | Zbl 0475.28009
[26] L.-S. Young Dimension, entropy and Lyapunov exponents, Ergodic theory and Dynamical systems , 109-124 (1983) | MR 684248 | Zbl 0523.58024
[27] S. Zelditch Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour. , 919-941 (1987) | MR 916129 | Zbl 0643.58029