Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions
Le Rousseau, Jérôme ; Lerner, Nicolas
Journées équations aux dérivées partielles, (2010), p. 1-23 / Harvested from Numdam

We consider a second-order selfadjoint elliptic operator with an anisotropic diffusion matrix having a jump across a smooth hypersurface. We prove the existence of a weight-function such that a Carleman estimate holds true. We moreover prove that the conditions imposed on the weight function are necessary.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/jedp.70
@article{JEDP_2010____A13_0,
     author = {Le Rousseau, J\'er\^ome and Lerner, Nicolas},
     title = {Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2010},
     pages = {1-23},
     doi = {10.5802/jedp.70},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2010____A13_0}
}
Le Rousseau, Jérôme; Lerner, Nicolas. Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions. Journées équations aux dérivées partielles,  (2010), pp. 1-23. doi : 10.5802/jedp.70. http://gdmltest.u-ga.fr/item/JEDP_2010____A13_0/

[1] Alinhac, S. Non-unicité pour des opérateurs différentiels à caractéristiques complexes simples, Ann. Sci. École Norm. Sup. (4), Tome 13 (1980) no. 3, pp. 385-393 | Numdam | MR 597745 | Zbl 0456.35002

[2] Benabdallah, A.; Dermenjian, Y.; Rousseau, J. Le Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl., Tome 336 (2007), pp. 865-887 | MR 2352986 | Zbl 1189.35349

[3] Buonocore, P.; Manselli, P. Nonunique continuation for plane uniformly elliptic equations in Sobolev spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Tome 29 (2000) no. 4, pp. 731-754 | Numdam | MR 1822406 | Zbl 1072.35049

[4] Calderón, A.-P. Uniqueness in the Cauchy problem for partial differential equations., Amer. J. Math., Tome 80 (1958), pp. 16-36 | MR 104925 | Zbl 0080.30302

[5] Carleman, T. Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes, Ark. Mat., Astr. Fys., Tome 26 (1939) no. 17, pp. 9 | Zbl 0022.34201

[6] Doubova, A.; Osses, A.; Puel, J.-P. Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var., Tome 8 (2002), pp. 621-661 (A tribute to J. L. Lions) | Numdam | MR 1932966 | Zbl 1092.93006

[7] Hörmander, L. On the uniqueness of the Cauchy problem, Math. Scand., Tome 6 (1958), pp. 213-225 | MR 104924 | Zbl 0088.30201

[8] Hörmander, L. Linear partial differential operators, Academic Press Inc., Publishers, New York, Die Grundlehren der mathematischen Wissenschaften, Bd. 116 (1963) | MR 161012 | Zbl 0108.09301

[9] Hörmander, L. The analysis of linear partial differential operators. IV, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften, Tome 275 (1994) (Fourier integral operators) | MR 1481433 | Zbl 0612.35001

[10] Imanuvilov, O. Yu.; Puel, J.-P. Global Carleman estimates for weak solutions of Elliptic nonhomogeneous Dirichlet problems, Int. Math. Res. Not., Tome 16 (2003), pp. 883-913 | MR 1959940 | Zbl 1146.35340

[11] Le Rousseau, J. Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, J. Differential Equations, Tome 233 (2007), pp. 417-447 | MR 2292514 | Zbl 1128.35020

[12] Le Rousseau, J.; Lebeau, G. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, Preprint (2009)

[13] Le Rousseau, J.; Lerner, N. Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions, in prep. (2010)

[14] Le Rousseau, J.; Robbiano, L. Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations, Arch. Rational Mech. Anal., Tome 195 (2010), pp. 953-990 | MR 2591978 | Zbl pre05731005

[15] Le Rousseau, J.; Robbiano, L. Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces, Invent. Math, to appear (2010), pp. 92 pages

[16] Lerner, N. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators, Birkhäuser, Basel, Pseudo-Differential Operators, Vol. 3 (2010) | MR 2599384 | Zbl 1186.47001

[17] Miller, K. Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients, Arch. Rational Mech. Anal., Tome 54 (1974), pp. 105-117 | MR 342822 | Zbl 0289.35046

[18] Pliś, A. On non-uniqueness in Cauchy problem for an elliptic second order differential equation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Tome 11 (1963), pp. 95-100 | MR 153959 | Zbl 0107.07901

[19] Schulz, F. On the unique continuation property of elliptic divergence form equations in the plane, Math. Z., Tome 228 (1998) no. 2, pp. 201-206 | MR 1630571 | Zbl 0905.35020