In this note we consider a strictly convex domain of dimension with smooth boundary and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.
@article{JEDP_2010____A11_0, author = {Ivanovici, Oana}, title = {Dispersive and Strichartz estimates for the wave equation in domains with boundary}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2010}, pages = {1-19}, doi = {10.5802/jedp.68}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2010____A11_0} }
Ivanovici, Oana. Dispersive and Strichartz estimates for the wave equation in domains with boundary. Journées équations aux dérivées partielles, (2010), pp. 1-19. doi : 10.5802/jedp.68. http://gdmltest.u-ga.fr/item/JEDP_2010____A11_0/
[1] Strichartz estimates for the wave equation on manifolds with boundary, to appear in Ann.Inst.H.Poincaré, Anal.Non Liréaire | Numdam | MR 2566711 | Zbl pre05612928
[2] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Tome 126 (2004) no. 3, pp. 569-605 | MR 2058384 | Zbl 1067.58027
[3] Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., Tome 21 (2008) no. 3, pp. 831-845 | MR 2393429 | Zbl pre05759139
[4] The functional calculus, J. London Math. Soc. (2), Tome 52 (1995) no. 1, pp. 166-176 | MR 1345723 | Zbl 0858.47012
[5] Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., Tome 32 (1977), pp. 17-62 | MR 477491 | Zbl 0375.35037
[6] Generalized Strichartz inequalities for the wave equation, Partial differential operators and mathematical physics (Holzhau, 1994), Birkhäuser, Basel (Oper. Theory Adv. Appl.) Tome 78 (1995), pp. 153-160 | MR 1365328
[7] bounds for eigenfunctions and spectral projections of the Laplacian near concave boundaries. Thesis, UCLA (1992) (http://www.staff.uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf)
[8] Counter example to Strichartz estimates for the wave equation in domains (2008) http://www.arxiv.org/abs/0805.2901 (to appear in Math. Annalen, arXiv:math/0805.2901) | Zbl pre05708688
[9] Counterexamples to the Strichartz estimates for the wave equation in domains II (2009) http://www.citebase.org/abstract?id=oai:arXiv.org:0903.0048 (arXiv:math/0903.0048) | MR 2640046
[10] Square function and heat flow estimates on domains (2008) http://www.arxiv.org/abs/0812.2733 (arXiv:math/0812.2733)
[11] Some generalizations of the Strichartz-Brenner inequality, Algebra i Analiz, Tome 1 (1989) no. 3, pp. 127-159 | MR 1015129 | Zbl 0732.35118
[12] Endpoint Strichartz estimates, Amer. J. Math., Tome 120 (1998) no. 5, pp. 955-980 | MR 1646048 | Zbl 0922.35028
[13] Estimation de dispersion pour les ondes dans un convexe, Journées “Équations aux Dérivées Partielles” (Evian, 2006) (2006) (see http://www.numdam.org/numdam-bin/fitem?id=JEDP_2006____A7_0) | Numdam
[14] On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Tome 130 (1995) no. 2, pp. 357-426 | MR 1335386 | Zbl 0846.35085
[15] A variational formulation of Schrödinger-Poisson systems in dimension , Comm. Partial Differential Equations, Tome 18 (1993) no. 7-8, pp. 1125-1147 | MR 1233187 | Zbl 0785.35086
[16] Whispering-gallery waves, Quantum Electronics, Tome 32 (2002) no. 5, pp. 377-400
[17] A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble), Tome 48 (1998) no. 3, pp. 797-835 | Numdam | MR 1644105 | Zbl 0974.35068
[18] On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc., Tome 8 (1995) no. 4, pp. 879-916 | MR 1308407 | Zbl 0860.35081
[19] On the norm of spectral clusters for compact manifolds with boundary, Acta Math., Tome 198 (2007) no. 1, pp. 107-153 | MR 2316270 | Zbl 1189.58017
[20] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Tome 44 (1977) no. 3, pp. 705-714 | MR 512086 | Zbl 0372.35001
[21] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Tome 15 (2002) no. 2, p. 419-442 (electronic) | MR 1887639 | Zbl 0990.35027