We present here the results concerning the influence of a thin obstacle on the behavior of incompressible flow. We extend the works made by Itimie, Lopes Filho, Nussenzveig Lopes and Kelliher where they consider that the obstacle shrinks to a point. We begin by working in two-dimension, and thanks to complex analysis we treat the case of ideal and viscous flows around a curve. Next, we consider three-dimensional viscous flow in the exterior of a surface/curve. We finish by giving uniqueness of the vortex-wave system with a single point vortex introduced by Marchioro and Pulvirenti, in the case where the initial vorticity is constant near the point vortex. This last result gives, in particular, the uniqueness of the limit system obtained in the case of a perfect fluid around a point. We choose here to give the main steps of this uniqueness result, obtained in collaboration with E. Miot.
@article{JEDP_2009____A4_0, author = {Lacave, Christophe}, title = {Incompressible flow around thin obstacle, uniqueness for the wortex-wave system}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2009}, pages = {1-17}, doi = {10.5802/jedp.57}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2009____A4_0} }
Lacave, Christophe. Incompressible flow around thin obstacle, uniqueness for the wortex-wave system. Journées équations aux dérivées partielles, (2009), pp. 1-17. doi : 10.5802/jedp.57. http://gdmltest.u-ga.fr/item/JEDP_2009____A4_0/
[1] Chemin J-Y., Desjardins B., Gallagher I. and Grenier E., Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations, Oxford University Press, 2006. | MR 2228849 | Zbl pre05029231
[2] Desjardins B., A few remarks on ordinary differential equations, Commun. in Part. Diff. Eq. ,21:11, 1667-1703, 1996. | MR 1421208 | Zbl 0899.35022
[3] DiPerna R. J. and Lions P. L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98, 511-547, 1989. | MR 1022305 | Zbl 0696.34049
[4] Iftimie D. and Kelliher J., Remarks on the vanishing obstacle limit for a 3D viscous incompressible fluid, to appear in Proceedings of the AMS, 2008. | MR 2448591 | Zbl 1156.76018
[5] Iftimie D., Lopes Filho M.C. and Nussenzveig Lopes H.J., Two Dimensional Incompressible Ideal Flow Around a Small Obstacle, Comm. Partial Diff. Eqns. 28 (2003), no. 12, 349-379. | MR 1974460 | Zbl 1094.76007
[6] Iftimie D., Lopes Filho M.C. and Nussenzveig Lopes H.J., Two Dimensional Incompressible Viscous Flow Around a Small Obstacle, Math. Annalen. 336 (2006), 449-489. | MR 2244381 | Zbl 1169.76016
[7] Kikuchi K., Exterior problem for the two-dimensional Euler equation, J Fac Sci Univ Tokyo Sect 1A Math 1983; 30(1):63-92. | MR 700596 | Zbl 0517.76024
[8] Kozono H. and Yamazaki M., Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space , Houst. J. Math. 21(4), 755-799 (1995). | MR 1368344 | Zbl 0848.35099
[9] Lacave C., Two Dimensional Incompressible Ideal Flow Around a Thin Obstacle Tending to a Curve, Annales de l’IHP, Analyse non linéaire 26 (2009), 1121-1148. | Numdam | MR 2542717 | Zbl 1166.76300
[10] Lacave C., Two Dimensional Incompressible Viscous Flow Around a Thin Obstacle Tending to a Curve, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 139 (2009), No. 6, pp. 1237-1254. | MR 2557320 | Zbl pre05656537
[11] Lacave C. and Miot E., Uniqueness for the vortex-wave system when the vorticity is constant near the point vortex, SIAM Journal on Mathematical Analysis, Vol. 41 (2009), No. 3, pp. 1138-1163. | MR 2529959 | Zbl 1189.35259
[12] Lopes Filho M.C., Vortex dynamics in a two dimensional domain with holes and the small obstacle limit, SIAM Journal on Mathematical Analysis, 39(2)(2007) : 422-436. | MR 2338413 | Zbl pre05254656
[13] Lopes Filho M.C., Nussenzveig Lopes H.J. and Zheng Y., Weak solutions to the equations of incompressible, ideal flow, Text of minicourse for the 22nd Brazilian Colloquium of Mathematics, (1999), http://www.ime.unicamp.br/ mlopes/publications.html
[14] Marchioro C. and Pulvirenti M., On the vortex-wave system, Mechanics, analysis, and geometry: 200 years after Lagrange, M. Francaviglia (ed), Elsevier Science, Amsterdam, 1991. | MR 1098512 | Zbl 0733.76015
[15] Marchioro C. and Pulvirenti M., Mathematical Theory of Incompressible Nonviscous Fluids, Springer-Verlag, 1991. | MR 1245492 | Zbl 0789.76002
[16] Marchioro C. and Pulvirenti M., Vortices and Localization in Euler Flows, Commun. Math. Phy. 154,49-61, 1993. | MR 1220946 | Zbl 0774.35058
[17] Monniaux S., Navier-Stokes Equations in Arbitrary Domains: the Fujita-Kato Scheme, Math. Res. Lett. 13 (2006), no. 3, 455-461. | MR 2231130 | Zbl 1126.35044
[18] Pommerenke C., Univalent functions, Vandenhoeck Ruprecht, 1975. | MR 507768 | Zbl 0298.30014
[19] Pommerenke C., Boundary behaviour of conformal maps, BerlinNew York: Springer-Verlag, 1992. | MR 1217706 | Zbl 0762.30001
[20] Starovoitov V.N., Uniqueness of a solution to the problem of evolution of a point vortex, Siberian Mathematical Journal, Vol. 35, no. 3, 1994. | MR 1292230 | Zbl 0854.76021
[21] Yudovich V.I., Non-stationary flows of an ideal incompressible fluid, Zh Vych Mat, 3:1032-1066, 1963. | MR 158189 | Zbl 0129.19402