Ce texte contient une version légèrement completée de mon cours de 6 heures au colloque d’équations aux dérivées partielles à Évian-les-Bains en juin 2009. Dans la première partie on expose quelques résultats anciens et récents sur les opérateurs non-autoadjoints. La deuxième partie est consacrée aux résultats récents sur la distribution de Weyl des valeurs propres des opérateurs elliptiques avec des petites perturbations aléatoires. La partie III, en collaboration avec B. Helffer, donne des bornes explicites dans le théorème de Gearhardt-Prüss pour des semi-groupes.
This text contains a slightly expanded version of my 6 hour mini-course at the PDE-meeting in Évian-les-Bains in June 2009. The first part gives some old and recent results on non-self-adjoint differential operators. The second part is devoted to recent results about Weyl distribution of eigenvalues of elliptic operators with small random perturbations. Part III, in collaboration with B. Helffer, gives explicit estimates in the Gearhardt-Prüss theorem for semi-groups.
@article{JEDP_2009____A1_0, author = {Sj\"ostrand, Johannes}, title = {Lecture notes : Spectral properties of non-self-adjoint operators}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2009}, pages = {1-111}, doi = {10.5802/jedp.54}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2009____A1_0} }
Sjöstrand, Johannes. Lecture notes : Spectral properties of non-self-adjoint operators. Journées équations aux dérivées partielles, (2009), pp. 1-111. doi : 10.5802/jedp.54. http://gdmltest.u-ga.fr/item/JEDP_2009____A1_0/
[1] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math 15(1962), 119–147. | MR 147774 | Zbl 0109.32701
[2] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2 D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London 1965 | MR 178246 | Zbl 0142.37401
[3] M.S. Agranovich, A.S. Markus, On spectral properties of elliptic pseudo-differential operators far from selfadjoint ones, Z. Anal. Anwendungen 8 (1989), no. 3, 237–260. | MR 1023117 | Zbl 0696.35123
[4] M.S. Agranovich, Personal communication, October 2009.
[5] Y. Almog, The stability of the normal state of superconductors in the presence of electric currents, Siam J. Math. Anal. 40 (2)(2008), 824-850. | MR 2438788 | Zbl 1165.82029
[6] N. Anantharaman, Spectral deviations for the damped wave equation, http://arxiv.org/abs/0904.1736 | MR 2720225
[7] V.G. Avakumović, Uber die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z. 65(1956), 324–344. | MR 80862 | Zbl 0070.32601
[8] J.M.Bismut, The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc. 18(2005), 379-476. | MR 2137981 | Zbl 1065.35098
[9] P. Bleher, B. Shiffman, S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142(2)(2000), 351–395. | MR 1794066 | Zbl 0964.60096
[10] W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008. http://pastel.paristech.org/5367/
[11] W. Bordeaux Montrieux, J. Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds, http://arxiv.org/abs/0903.2937
[12] L.S. Boulton, Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra, J. Operator Theory 47(2)(2002), 413-429. | MR 1911854 | Zbl 1034.34099
[13] N. Burq, M. Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17(2)(2004), 443-471. | MR 2051618 | Zbl 1050.35058
[14] T. Carleman, Über die asymptotische Verteilung der Eigenwerte partielle Differentialgleichungen, Berichten der mathematisch-physisch Klasse der Sächsischen Akad. der Wissenschaften zu Leipzig, LXXXVIII Band, Sitsung v. 15. Juni 1936. | Zbl 0017.11402
[15] T.W. Cherry, On the solution of Hamiltonian systems of differential equations in the neighboorhood of a singular point, Proc. London. Math. Soc. 27(1928), 151-170.
[16] T. Christiansen, Several complex variables and the distribution of resonances in potential scattering, Comm. Math. Phys. 259(3)(2005), 711–728. | MR 2174422 | Zbl 1088.81093
[17] T. Christiansen, Several complex variables and the order of growth of the resonance counting function in Euclidean scattering, Int. Math. Res. Not. 2006, Art. ID 43160, 36 pp | MR 2272101 | Zbl 1161.35455
[18] T. Christiansen, P.D. Hislop, The resonance counting function for Schrödinger operators with generic potentials, Math. Res. Lett. 12(5–6)(2005), 821–826. | MR 2189242 | Zbl 1155.35319
[19] T.J. Christiansen, M. Zworski, Probabilistic Weyl laws for quantized tori, http://arxiv.org/abs/0909.2014 | MR 2679813
[20] Y. Colin de Verdière, Quasi-modes sur les variétés Riemanniennes, Inv. Math. 43(1977), 15–52. | MR 501196 | Zbl 0449.53040
[21] E.B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators, Comm. Math. Phys. 200(1)(1999), 35–41. | MR 1671904 | Zbl 0921.47060
[22] E.B. Davies, Pseudospectra, the harmonic oscillator and complex resonances, Proc. Roy. Soc. London Ser. A 455(1999), 585–599. | MR 1700903 | Zbl 0931.70016
[23] E.B. Davies, Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106. Cambridge University Press, Cambridge, 2007. | MR 2359869 | Zbl 1138.47001
[24] E.B. Davies, Semigroup growth bounds, J. Op. Theory 53(2)(2005), 225–249. | MR 2153147 | Zbl 1114.47040
[25] E.B. Davies, M. Hager, Perturbations of Jordan matrices, J. Approx. Theory 156(1)(2009), 82–94. | MR 2490477 | Zbl 1164.15004
[26] N. Dencker, J. Sjöstrand, M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math. 57(3)(2004), 384–415. | MR 2020109 | Zbl 1054.35035
[27] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999. | MR 1735654 | Zbl 0926.35002
[28] L. Desvillettes, C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math., 54(1)(2001), 1–42. | MR 1787105 | Zbl 1029.82032
[29] J.P. Eckmann, M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235(2)(2003), 233–253. | MR 1969727 | Zbl 1040.35016
[30] K.J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000. | MR 1721989 | Zbl 0952.47036
[31] K.J. Engel, R. Nagel, A short course on operator semi-groups, Unitext, Springer-Verlag (2005). | Zbl 1106.47001
[32] I. Gallagher, Th. Gallay, F. Nier, Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator, Int. Math. Res. Not. IMRN 2009, no. 12, 2147–2199. | MR 2511908 | Zbl 1180.35383
[33] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). | MR 246142 | Zbl 0181.13504
[34] S. Graffi, C. Villegas Blas, A uniform quantum version of the Cherry theorem, Comm. Math. Phys. 278(1)(2008), 101–116. | MR 2367199 | Zbl 1151.81015
[35] A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Ser., 196, Cambridge Univ. Press, (1994). | MR 1269107 | Zbl 0804.35001
[36] M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints, Thesis (2005), http://tel.ccsd.cnrs.fr/docs/00/04/87/08/PDF/tel-00010848.pdf
[37] M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2)(2006), 243–280. | Numdam | MR 2244217 | Zbl 1131.34057
[38] M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6)(2006), 1035–1064. | MR 2267057 | Zbl 1115.81032
[39] M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1)(2008), 177–243. | MR 2415321 | Zbl 1151.35063
[40] B. Helffer, On spectral problems related to a time dependent model in superconductivity with electric current, Proceedings of the conference in PDE in Evian, June 2009, to appear.
[41] B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag, Berlin, 2005. | MR 2130405 | Zbl 1072.35006
[42] B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit. I. Comm. Partial Differential Equations 9(4) (1984), 337–408. | MR 740094 | Zbl 0546.35053
[43] B. Helffer, J. Sjöstrand, Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations 10(3)(1985), 245–340. | MR 780068 | Zbl 0597.35024
[44] B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) 24–25(1986), | Numdam | MR 871788 | Zbl 0631.35075
[45] F. Hérau, M. Hitrik, J. Sjöstrand, Tunnel effect for Fokker-Planck type operators, Annales Henri Poincaré, 9(2)(2008), 209–274. | MR 2399189 | Zbl 1141.82011
[46] F. Hérau, M. Hitrik, J. Sjöstrand, Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications, International Math Res Notices, Vol. 2008, Article ID rnn057, 48p. | MR 2438070 | Zbl 1151.35012
[47] F. Hérau, F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), no. 2, 151–218. | MR 2034753 | Zbl 1139.82323
[48] F. Hérau, J. Sjöstrand, C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. PDE 30(5–6)(2005), 689–760. | MR 2153513 | Zbl 1083.35149
[49] M. Hitrik, Eigenfunctions and expansions for damped wave equations, Meth. Appl. Anal. 10 (4)(2003), 1-22. | MR 2105039 | Zbl 1088.58510
[50] M. Hitrik, Boundary spectral behavior for semiclassical operators in dimension one, Int. Math. Res. Not. 2004, no. 64, 3417–3438. | MR 2101278 | Zbl 1077.35105
[51] M. Hitrik, L. Pravda-Starov, Spectra and semigroup smoothing for non-elliptic quadratic operators, Math. Ann. 344(4)(2009), 801–846. | MR 2507625 | Zbl 1171.47038
[52] M. Hitrik, J. Sjöstrand, Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2, Annales Sci ENS, sér. 4, 41(4)(2008), 511-571. | Numdam | MR 2489633 | Zbl 1171.35131
[53] M. Hitrik, J. Sjöstrand, S. Vũ Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators, Amer. J. Math. 129(1)(2007), 105–182. | MR 2288739 | Zbl 1172.35085
[54] L. Hörmander, Differential equations without solutions, Math. Ann. 140(1960), 169–173. | MR 147765 | Zbl 0093.28903
[55] L. Hörmander, Differential operators of principal type, Math. Ann. 140(1960), 124–146. | MR 130574 | Zbl 0090.08101
[56] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. | MR 609014 | Zbl 0164.13201
[57] L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, Série des Conférences de l’Union Mathématique Internationale, No. 1. Monographie No. 18 de l’Enseignement Mathématique. Secrétariat de l’Enseignement Mathématique, Université de Genève, Geneva, 1971. 69 pp. | MR 344944 | Zbl 0224.35085
[58] L. Hörmander, The analysis of linear partial differential operators. I–IV, Grundlehren der Mathematischen Wissenschaften 256, 257, 274, 275, Springer-Verlag, Berlin, 1983, 1985. | MR 717035 | Zbl 0521.35001
[59] D. Jerison, Locating the first nodal line in the Neumann problem, Trans. Amer. Math. Soc. 352(5)(2000), 2301–2317. | MR 1694293 | Zbl 0958.35028
[60] M.V. Keldysh, On the eigenvalues and eigenfunctions of certain classes of nonselfadjoint equations, Dokl. Akad. Nauk SSSR 77(1951),11–14. English translation in [71] | Zbl 0045.39402
[61] M.V. Keldysh, On a Tauberian theorem, Trudy Mat. Inst. Steklov, 38(1951), 77–86; English transl. in AMS Transl. (2) 102(1973) | MR 46463 | Zbl 0102.09902
[62] M.V. Keldysh, On completeness of the eigenfunctions for certain classes of nonselfadjoint linear operators, Uspekhi Mat. Nauk 27(1971)no. 4(160), 15–41. | MR 300125 | Zbl 0225.47008
[63] V.V. Kučerenko, Asymptotic solutions of equations with complex characteristics, (Russian) Mat. Sb. (N.S.) 95(137)(1974), 163–213, 327. | MR 367422 | Zbl 0311.35007
[64] B. Lascar, J. Sjöstrand, Equation de Schrödinger et propagation des singularités pour des opérateurs pseudodifférentiels à caractéristiques réelles de multiplicité variable I, Astérisque, 95(1982), 467–523. | Zbl 0529.58033
[65] V.F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions. With an addendum by A.I. Shnirelman. Ergebnisse der Mathematik und ihrer Grenzgebiete, 24. Springer-Verlag, Berlin, 1993. | MR 1239173 | Zbl 0814.58001
[66] G. Lebeau, Equation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), 73–109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996. | MR 1385677 | Zbl 0863.58068
[67] G. Lebeau, Le bismutien, Sém. é.d.p., Ecole Pol. 2004–05,I.1–I.15 | Numdam | MR 2182046
[68] B.Ya. Levin, Distribution of zeros of entire functions, English translation, Amer. Math. Soc., Providence, R.I., 1980 | MR 589888 | Zbl 0152.06703
[69] B.M. Levitan, Some questions of spectral theory of selfadjoint differential operators, Uspehi Mat. Nauk (N.S.) 11 no. 6 (72)(1956), 117–144. | MR 104043 | Zbl 0073.32004
[70] A.J. Lichtenberg, M.A. Lieberman, Regular and chaotic dynamics, Second edition. Springer-Verlag, New York, 1992. | MR 1169466 | Zbl 0748.70001
[71] A.S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translated from the Russian by H.H. McFaden. Translation edited by Ben Silver. With an appendix by M. V. Keldysh. Translations of Mathematical Monographs, 71. American Mathematical Society, Providence, RI, 1988. | MR 971506 | Zbl 0678.47005
[72] A.S. Markus, V.I. Matseev, Asymptotic behavior of the spectrum of close-to-normal operators, Funktsional. Anal. i Prilozhen. 13(3)(1979), 93–94, Functional Anal. Appl. 13(3)(1979), 233–234 (1980). | MR 545380 | Zbl 0457.47005
[73] J. Martinet, Sur les propriétés spectrales d’opérateurs nonautoadjoints provenant de la mécanique des fluides, Thèse de doctorat, Université de Paris Sud, 2009.
[74] V.P. Maslov, Operational methods, Translated from the Russian by V. Golo, N. Kulman and G. Voropaeva. Mir Publishers, Moscow, 1976. | MR 512495 | Zbl 0449.47002
[75] O. Matte, Correlation asymptotics for non-translation invariant lattice spin systems, Math. Nachr. 281(5)(2008), 721–759. | MR 2401514 | Zbl 1144.82311
[76] A. Melin, J. Sjoestrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. Partial Differential Equations 1(4)(1976), 313–400. | MR 455054 | Zbl 0364.35049
[77] A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Applications of Analysis, 9(2)(2002), 177-238. | MR 1957486 | Zbl 1082.35176
[78] A. Melin, J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque, 284(2003), 181–244. | MR 2003421 | Zbl 1061.35186
[79] A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypo-elliptic operators, Math. Ann. 235(1978), 55-85. | MR 481627 | Zbl 0375.35014
[80] J. Moser, On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math. 11(1958), 257–271. | MR 96021 | Zbl 0082.08003
[81] A. Pazy, Semigroups of linear operators and applications to partial differential operators. Appl. Math. Sci. Vol. 44, Springer (1983). | MR 710486 | Zbl 0516.47023
[82] K. Pravda-Starov, Étude du pseudo-spectre d’opérateurs non auto-adjoints, thesis 2006, http://tel.archives-ouvertes.fr/docs/00/10/98/95/PDF/manuscrit.pdf
[83] K. Pravda-Starov, A complete study of the pseudo-spectrum for the rotated harmonic oscillator, J. London Math. Soc. (2) 73(3)(2006), 745–761. | MR 2241978 | Zbl 1106.34060
[84] K. Pravda-Starov, Boundary pseudospectral behaviour for semiclassical operators in one dimension, Int. Math. Res. Not. IMRN 2007, no. 9, Art. ID rnm 029, 31 pp. | MR 2347297 | Zbl 1135.47048
[85] K. Pravda-Starov, On the pseudospectrum of elliptic quadratic differential operators, Duke Math. J. 145(2)(2008), 249–279. | MR 2449947 | Zbl 1157.35129
[86] D. Robert, Autour de l’approximation semi-classique, Progress in Mathematics, 68. Birkhäuser Boston, Inc., Boston, MA, 1987. | MR 897108 | Zbl 0621.35001
[87] M. Rudelson, Invertibility of random matrices: norm of the inverse, Ann.of Math. 168(2)(2008), 575–600. | MR 2434885 | Zbl 1175.15030
[88] E. Schenk, Resonances distribution in partially open quantum chaotic systems, (joint work with Stéphane Nonnenmacher) Talk on November 28th, 2008 at Nice days of waves in complex media.
[89] E. Schenk, Systèmes quantiques ouverts et méthodes semi-classiques, thèse novembre 2009. http://www.lpthe.jussieu.fr/ schenck/thesis.pdf
[90] B. Shiffman, S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200(3)(1999), 661–683. | MR 1675133 | Zbl 0919.32020
[91] R.T. Seeley, Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) pp. 288–307 Amer. Math. Soc., Providence, R.I. | MR 237943 | Zbl 0159.15504
[92] R. Seeley, A simple example of spectral pathology for differential operators, Comm. Partial Differential Equations 11(6)(1986), 595–598. | MR 837277 | Zbl 0598.35013
[93] B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling, Ann. of Math. (2) 120(1)(1984), 89–118. | MR 750717 | Zbl 0626.35070
[94] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 95(1982). | MR 699623 | Zbl 0524.35007
[95] J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr., 221(2001), 95–149. | MR 1806367 | Zbl 0979.35109
[96] J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. of RIMS Kyoto Univ., 36(5)(2000), 573–611. | MR 1798488 | Zbl 0984.35121
[97] J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, Ann. Fac. Sci Toulouse, to appear http://arxiv.org/abs/0802.3584 | Numdam | MR 2590387 | Zbl 1194.47058
[98] J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations, http://arxiv.org/abs/0809.4182 | Numdam | MR 2674764
[99] J. Sjöstrand, Resolvent estimates for non-self-adjoint operators via semi-groups, http://arxiv.org/abs/0906.0094 pages 359–384 in International Mathematical Series Vol 13, Around the research of Vladimir Maz’ya III, Springer, Tamara Rozhkovskaya Publisher, 2010 http://arxiv.org/abs/0906.0094 | MR 2664715 | Zbl 1198.47068
[100] J. Sjöstrand, Counting zeros of holomorphic functions of exponential growth, http://arxiv.org/abs/0910.0346 | MR 2679744
[101] J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, Annales Inst. Fourier, 57 (7) (2007), 2095–2141. http://arxiv.org/math.SP/0312166. | Numdam | MR 2394537 | Zbl 1140.15009
[102] J. Sjöstrand, M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math J, 137 (3) (2007), 381-459. | MR 2309150 | Zbl pre05154881
[103] J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, http://arxiv.org/abs/math/0312166, Ann. Inst. Fourier, to appear. | Numdam | MR 2394537 | Zbl 1140.15009
[104] J. Tailleur, S. Tanase-Nicola, J. Kurchan, Kramers equation and supersymmetry, J. Stat. Phys. 122(4)(2006), 557–595. | MR 2213943 | Zbl 1149.81013
[105] L.N. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39(3)(1997), 383–406. | MR 1469941 | Zbl 0896.15006
[106] L.N. Trefethen, M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, NJ, 2005. | MR 2155029 | Zbl 1085.15009
[107] C. Villani, Hypocoercivity. Memoirs of the AMS, Vol. 202, no. 950 (2009). | MR 2562709 | Zbl 1197.35004
[108] S. Vũ Ngọc, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses, 22. Société Mathématique de France, Paris, 2006. | MR 2331010 | Zbl 1118.37001
[109] G. Weiss, The resolvent growth assumption for semigroups on Hilbert spaces, J. Math. An. Appl. 145(1990), 154–171. | MR 1031182 | Zbl 0693.47034
[110] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71(4)(1912), 441–479 | MR 1511670
[111] J. Wunsch, M. Zworski, The FBI transform on compact manifolds, Trans. A.M.S., 353(3)(2001), 1151–1167. | MR 1804416 | Zbl 0974.35005
[112] M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73(2)(1987), 277–296. | MR 899652 | Zbl 0662.34033
[113] M. Zworski, A remark on a paper of E. B Davies: “Semi-classical states for non-self-adjoint Schrödinger operators”, Comm. Math. Phys. 200(1)(1999), 35–41 Proc. Amer. Math. Soc. 129 (10) (2001), 2955–2957 | MR 1840099 | Zbl 0981.35107