We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation , where is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes bounds on the curvature tensor of is a major step towards the proof of the bounded curvature conjecture.
@article{JEDP_2008____A9_0, author = {Klainerman, Sergiu and Rodnianski, Igor and Szeftel, Jeremie}, title = {Around the bounded $L^2$ curvature conjecture in general relativity}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2008}, pages = {1-15}, doi = {10.5802/jedp.53}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2008____A9_0} }
Klainerman, Sergiu; Rodnianski, Igor; Szeftel, Jeremie. Around the bounded $L^2$ curvature conjecture in general relativity. Journées équations aux dérivées partielles, (2008), pp. 1-15. doi : 10.5802/jedp.53. http://gdmltest.u-ga.fr/item/JEDP_2008____A9_0/
[1] Équations d’ondes quasilinéaires et effet dispersif, Internat. Math. Res. Notices (1999) no. 21, pp. 1141-1178 | MR 1728676 | Zbl 0938.35106
[2] Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math., Tome 121 (1999) no. 6, pp. 1337-1377 | MR 1719798 | Zbl 0952.35073
[3] Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys., Tome 94 (1984) no. 2, pp. 155-175 | MR 761792 | Zbl 0548.53054
[4] The global nonlinear stability of the Minkowski space, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 41 (1993) | MR 1316662 | Zbl 0827.53055
[5] Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Tome 88 (1952), pp. 141-225 | MR 53338 | Zbl 0049.19201
[6] Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal., Tome 63 (1976) no. 3, p. 273-294 (1977) | MR 420024 | Zbl 0361.35046
[7] Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., Tome 46 (1993) no. 9, pp. 1221-1268 | MR 1231427 | Zbl 0803.35095
[8] Estimates for null forms and the spaces , Internat. Math. Res. Notices (1996) no. 17, pp. 853-865 | MR 1420552 | Zbl 0909.35095
[9] Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J., Tome 117 (2003) no. 1, pp. 1-124 | MR 1962783 | Zbl 1031.35091
[10] A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal., Tome 16 (2006) no. 1, pp. 126-163 | MR 2221254 | Zbl pre05029441
[11] Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal., Tome 16 (2006) no. 1, pp. 164-229 | MR 2221255 | Zbl pre05029445
[12] PDE as a unified subject, Geom. Funct. Anal. (2000) no. Special Volume, Part I, pp. 279-315 (GAFA 2000 (Tel Aviv, 1999)) | MR 1826256 | Zbl 1002.35002
[13] Ricci defects of microlocalized Einstein metrics, J. Hyperbolic Differ. Equ., Tome 1 (2004) no. 1, pp. 85-113 | MR 2052472 | Zbl 1063.53051
[14] Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ., Tome 2 (2005) no. 2, pp. 279-291 | MR 2151111 | Zbl pre02202321
[15] Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math., Tome 159 (2005) no. 3, pp. 437-529 | MR 2125732 | Zbl 1136.58018
[16] The causal structure of microlocalized rough Einstein metrics, Ann. of Math. (2), Tome 161 (2005) no. 3, pp. 1195-1243 | MR 2180401 | Zbl 1089.83007
[17] Rough solutions of the Einstein-vacuum equations, Ann. of Math. (2), Tome 161 (2005) no. 3, pp. 1143-1193 | MR 2180400 | Zbl 1089.83006
[18] Counterexamples to local existence for semi-linear wave equations, Amer. J. Math., Tome 118 (1996) no. 1, pp. 1-16 | MR 1375301 | Zbl 0855.35080
[19] Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations, Tome 18 (1993) no. 1-2, pp. 169-177 | MR 1211729 | Zbl 0803.35096
[20] A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble), Tome 48 (1998) no. 3, pp. 797-835 | Numdam | MR 1644105 | Zbl 0974.35068
[21] On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett., Tome 1 (1994) no. 6, pp. 729-737 | MR 1306017 | Zbl 0832.35018
[22] Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. (2), Tome 162 (2005) no. 1, pp. 291-366 | MR 2178963 | Zbl 1098.35113
[23] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 43 (1993) (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR 1232192 | Zbl 0821.42001
[24] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math., Tome 122 (2000) no. 2, pp. 349-376 | MR 1749052 | Zbl 0959.35125
[25] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Tome 15 (2002) no. 2, p. 419-442 (electronic) | MR 1887639 | Zbl 0990.35027