We deal with the incompressible Navier-Stokes equations, in two and three dimensions, when some vortex patches are prescribed as initial data i.e. when there is an internal boundary across which the vorticity is discontinuous. We show -thanks to an asymptotic expansion- that there is a sharp but smooth variation of the fluid vorticity into a internal layer moving with the flow of the Euler equations; as long as this later exists and as , where is the viscosity coefficient.
@article{JEDP_2008____A8_0, author = {Sueur, Franck}, title = {Vorticity internal transition layers for the Navier-Stokes equations}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2008}, pages = {1-15}, doi = {10.5802/jedp.52}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2008____A8_0} }
Sueur, Franck. Vorticity internal transition layers for the Navier-Stokes equations. Journées équations aux dérivées partielles, (2008), pp. 1-15. doi : 10.5802/jedp.52. http://gdmltest.u-ga.fr/item/JEDP_2008____A8_0/
[1] P. Brenner. The Cauchy problem for symmetric hyperbolic systems in . Math. Scand., 19:27–37, 1966. | MR 212427 | Zbl 0154.11304
[2] J.-Y. Chemin. Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel. Invent. Math., 103(3):599–629, 1991. | MR 1091620 | Zbl 0739.76010
[3] J.-Y. Chemin. Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4), 26(4):517–542, 1993. | Numdam | MR 1235440 | Zbl 0779.76011
[4] J.-Y. Chemin. Two-dimensional Euler system and the vortex patches problem. In Handbook of mathematical fluid dynamics. Vol. III, pages 83–160. North-Holland, Amsterdam, 2004. | MR 2099034 | Zbl pre05177020
[5] N. Depauw. Poche de tourbillon pour Euler 2D dans un ouvert à bord. J. Math. Pures Appl. (9), 78(3):313–351, 1999. | MR 1687165 | Zbl 0927.76014
[6] A. Dutrifoy. On 3-D vortex patches in bounded domains. Comm. Partial Differential Equations, 28(7-8):1237–1263, 2003. | MR 1998937 | Zbl 1030.76011
[7] K. O. Friedrichs. The identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc., 55:132–151, 1944. | MR 9701 | Zbl 0061.26201
[8] P. Gamblin and X. Saint Raymond. On three-dimensional vortex patches. Bull. Soc. Math. France, 123(3):375–424, 1995. | Numdam | MR 1373741 | Zbl 0844.76013
[9] O. Guès, G. Métivier, M. Williams, and K. Zumbrun. Navier-Stokes regularization of multidimensional Euler shocks. Ann. Sci. École Norm. Sup. (4), 39(1):75–175, 2006. | Numdam | MR 2224659 | Zbl 1173.35082
[10] C. Huang. Remarks on regularity of non-constant vortex patches. Commun. Appl. Anal., 3(4):449–459, 1999. | MR 1706742 | Zbl 0933.35120
[11] C. Huang. Singular integral system approach to regularity of 3D vortex patches. Indiana Univ. Math. J., 50(1):509–552, 2001. | MR 1857044 | Zbl 0993.35077
[12] A. Majda. Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math., 39(S, suppl.):S187–S220, 1986. Frontiers of the mathematical sciences: 1985 (New York, 1985). | MR 861488 | Zbl 0595.76021
[13] W. Rankine. On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. Royal Soc. London, 160:277–288, 1870.
[14] J. Rauch. Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Amer. Math. Soc., 291(1):167–187, 1985. | MR 797053 | Zbl 0549.35099
[15] P. Serfati. Une preuve directe d’existence globale des vortex patches D. C. R. Acad. Sci. Paris Sér. I Math., 318(6):515–518, 1994. | MR 1270072 | Zbl 0803.76022
[16] F. Sueur. Vorticity internal transition layers for the Navier-Stokes equations. Preprint, available on arXiv.
[17] P. Zhang and Q. J. Qiu. Propagation of higher-order regularities of the boundaries of -D vortex patches. Chinese Ann. Math. Ser. A, 18(3):381–390, 1997. | MR 1475796 | Zbl 0886.35119