We describe the generic behavior of the resonance counting function for a Schrödinger operator with a bounded, compactly-supported real or complex valued potential in dimensions. This note contains a sketch of the proof of our main results [5, 6] that generically the order of growth of the resonance counting function is the maximal value in the odd dimensional case, and that it is the maximal value on each nonphysical sheet of the logarithmic Riemann surface in the even dimensional case. We include a review of previous results concerning the resonance counting functions for Schrödinger operators with compactly-supported potentials.
@article{JEDP_2008____A3_0, author = {Christiansen, T. J. and Hislop, P. D.}, title = {Resonances for Schr\"odinger operators with compactly supported potentials}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2008}, pages = {1-18}, doi = {10.5802/jedp.47}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2008____A3_0} }
Christiansen, T. J.; Hislop, P. D. Resonances for Schrödinger operators with compactly supported potentials. Journées équations aux dérivées partielles, (2008), pp. 1-18. doi : 10.5802/jedp.47. http://gdmltest.u-ga.fr/item/JEDP_2008____A3_0/
[1] R. Bañuelos, A. Sá Barreto, On the heat trace of Schrödinger operators, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2153–2164. | MR 1361734 | Zbl 0843.35016
[2] T. Christiansen, Some lower bounds on the number of resonances in Euclidean scattering, Math. Res. Lett. 6 (1999), no. 2, 203–211. | MR 1689210 | Zbl 0947.35102
[3] T. Christiansen, Several complex variables and the distribution of resonances for potential scattering, Commun. Math. Phys 259 (2005), 711-728. | MR 2174422 | Zbl 1088.81093
[4] T. Christiansen, Schrödinger operators with complex-valued potentials and no resonances, Duke Math Journal 133, no. 2 (2006), 313-323. | MR 2225694 | Zbl 1107.35094
[5] T. Christiansen and P. D. Hislop, The resonance counting function for Schrödinger operators with generic potentials, Math. Research Letters, 12 (6) (2005), 821-826. | MR 2189242 | Zbl 1155.35319
[6] T. Christiansen and P. D. Hislop, Maximal order of growth for the resonance counting function for generic potentials in even dimensions, submitted, arXiv:0811.4761v1.
[7] R. Froese, Asymptotic distribution of resonances in one dimension, J. Differential Equations 137 (1997), no. 2, 251–272. | MR 1456597 | Zbl 0955.35057
[8] R. Froese, Upper bounds for the resonance counting function of Schrödinger operators in odd dimensions, Canad. J. Math. 50 (1998), no. 3, 538–546. | MR 1629819 | Zbl 0918.47005
[9] A. Intissar, A polynomial bound on the number of the scattering poles for a potential in even dimensional spaces , Comm. in Partial Diff. Eqns. 11, No. 4 (1986), 367–396. | MR 829322 | Zbl 0607.35069
[10] P. D. Lax and R. S. Phillips, Decaying modes for the wave equation in the exterior of an obstacle, Comm. Pure Appl. Math. 22 (1969), 737–787. | MR 254432 | Zbl 0181.38201
[11] P. Lelong and L. Gruman, Entire functions of several complex variables, Springer Verlag, Berlin, 1986. | MR 837659 | Zbl 0583.32001
[12] G. P. Menzala, T. Schonbek, Scattering frequencies for the wave equation with a potential term, J. Funct. Anal. 55 (1984), 297–322. | MR 734801 | Zbl 0536.35060
[13] R. B. Melrose, Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303. | MR 724031 | Zbl 0535.35067
[14] R. B. Melrose, Geometric scattering theory, Cambridge University Press, 1995. | MR 1350074 | Zbl 0849.58071
[15] R. G. Newton, Analytic properties of radial wave functions, J. Math. Phys. 1, no. 4, 319–347 (1960). | MR 115692 | Zbl 0090.19303
[16] H. M. Nussenzveig, The poles of the -matrix of a rectangular potential well or barrier, Nuclear Phys. 11 (1959), 499–521.
[17] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, San Deigo, 1974. | MR 435697 | Zbl 0303.41035
[18] F. W. J. Olver, The asymptotic solution of linear differential equations of the second order for large values of a parameter, Phil. Trans. Royal Soc. London Ser. A 247, 307–327 (1954). | MR 67249 | Zbl 0070.30801
[19] F. W. J. Olver, The asymptotic expansion of Bessel functions of large order, Phil. Trans. Royal Soc. London ser. A 247, 328–368 (1954). | MR 67250 | Zbl 0070.30801
[20] T. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995. | MR 1334766 | Zbl 0828.31001
[21] T. Regge, Analytic properties of the scattering matrix, Il Nuovo Cimento 8 (1958), no. 10, 671–679. | MR 95702 | Zbl 0080.41903
[22] A. Sá Barreto, Remarks on the distribution of resonances in odd dimensional Euclidean scattering, Asymptot. Anal. 27 (2001), no. 2, 161–170. | MR 1852004 | Zbl 1116.35344
[23] A. Sá Barreto, Lower bounds for the number of resonances in even dimensional potential scattering, J. Funct. Anal. 169 (1999), 314–323. | MR 1726757 | Zbl 0939.35133
[24] A. Sá Barreto, S.-H. Tang, Existence of resonances in even dimensional potential scattering, Commun. Part. Diff. Eqns. 25 (2000), no. 5-6, 1143–1151. | MR 1759805 | Zbl 0947.35101
[25] A. Sá Barreto, M. Zworski, Existence of resonances in three dimensions, Comm. Math. Phys. 173 (1995), no. 2, 401–415. | MR 1355631 | Zbl 0835.35099
[26] A. Sá Barreto, M. Zworski, Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49 (1996), no. 12, 1271–1280. | MR 1414586 | Zbl 0877.35087
[27] N. Shenk, D. Thoe, Resonant states and poles of the scattering matrix for perturbations of , J. Math. Anal. Appl. 37 (1972), 467–491. | MR 308616 | Zbl 0229.35072
[28] B. Simon, Resonances in one dimension and Fredholm determinants, J. Funct. Anal. 178 (2000), no. 2, 396–420. | MR 1802901 | Zbl 0977.34075
[29] B. Simon, Trace Ideals and their Applications, London Mathematical Society Lecture Note Series 35, Cambridge University Press, 1979; second edition, American Mathematical Society, Providence RI, 2005. | MR 2154153 | Zbl 0423.47001
[30] B. Simon, Operators with singular continuous spectrum: I. general operators, Ann. Math. 141 (1995), 131–145. | MR 1314033 | Zbl 0851.47003
[31] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60 (1990), no. 1, 1–57. | MR 1047116 | Zbl 0702.35188
[32] J. Sjöstrand, M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4(1991), no. 4, 729–769. | MR 1115789 | Zbl 0752.35046
[33] P. Stefanov, Sharp bounds on the number of the scattering poles, J. Func. Anal., 231 (1) (2006), 111–142. | MR 2190165 | Zbl 1099.35074
[34] A. Vasy, Scattering poles for negative potentials, Comm. Partial Differential Equations 22 (1997), no. 1-2, 185–194 | MR 1434143 | Zbl 0884.35109
[35] G. Vodev, Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 39–49. | MR 1163673 | Zbl 0754.35105
[36] G. Vodev, Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J. 74 (1) (1994), 1–17. | MR 1271461 | Zbl 0813.35075
[37] G. Vodev, Sharp bounds on the number of scattering poles in the two-dimensional case, Math. Nachr. 170 (1994), 287–297. | MR 1302380 | Zbl 0829.35091
[38] G. Vodev, Resonances in Euclidean scattering, Cubo Matemática Educacional 3 No. 1, Enero 2001, 319–360. | Zbl 1075.35024
[39] G. N. Watson, Treatise on the theory of Bessel functions, Cambridge University Press, 1966. | Zbl 0174.36202
[40] D. Yafaev, Mathematical scattering theory. General theory, translated from the Russian by J. R. Schulenberger, Translations of Mathematical Monographs, 105, American Mathematical Society, Providence, RI, 1992 | MR 1180965 | Zbl 0761.47001
[41] M. Zworski, Sharp polynomial poles on the number of scattering poles, Duke Math. J. 59 (1989), 311–323. | MR 1016891 | Zbl 0705.35099
[42] M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), 277–296. | MR 899652 | Zbl 0662.34033
[43] M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370–403. | MR 987299 | Zbl 0681.47002
[44] M. Zworski, Poisson formulae for resonances, Séminaire sur les Equations aux Dérivées Partielles, 1996–1997, Exp. No. XIII, 14 pp., Ecole Polytech., Palaiseau, 1997 Seminaire Ecole Polytechnique. | Numdam | MR 1482819 | Zbl pre02124115
[45] M. Zworski, Counting scattering poles, In: Spectral and scattering theory (Sanda, 1992), 301–331, Lectures in Pure and Appl. Math. 161, New York: Dekker, 1994. | MR 1291649 | Zbl 0823.35139