@article{JEDP_2007____A2_0, author = {De~Pauw, Thierry}, title = {On $\infty $-harmonic functions}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2007}, pages = {1-11}, doi = {10.5802/jedp.41}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2007____A2_0} }
De Pauw, Thierry. On $\infty $-harmonic functions. Journées équations aux dérivées partielles, (2007), pp. 1-11. doi : 10.5802/jedp.41. http://gdmltest.u-ga.fr/item/JEDP_2007____A2_0/
[1] A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., Tome 41 (2004) no. 4, pp. 439-505 | MR 2083637 | Zbl 1150.35047
[2] A remark on infinity harmonic functions, Electron. J. Diff. Eqns., Tome Conf. 06 (2001), pp. 123-129 | MR 1804769 | Zbl 0964.35061
[3] User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., Tome 27 (1992), pp. 1-67 | MR 1118699 | Zbl 0755.35015
[4] Divergence forms of the infinity-laplacian, Publ. Mat., Tome 50 (2006) no. 1, pp. 229-248 | MR 2325020 | Zbl pre05207316
[5] Estimates for smooth absolutely minimizing Lipschitz extensions, Electron. J. Diff. Eqns., Tome 1993 (1993) no. 3, pp. 1-9 | MR 1241488 | Zbl 0809.35032
[6] Various properties of solutions of the infinity-laplacian equation, Comm. Partial Differential Equations, Tome 30 (2005) no. 9, pp. 1401-1428 | MR 2180310 | Zbl 1123.35018
[7] Geometric Measure Theory, Springer-Verlag, New York, Die grundlehren der mathematischen wissenschaften, Tome 153 (1969) | MR 257325 | Zbl 0176.00801
[8] regularity for infinity-harmonic functions in two dimensions, Arch. Ration. Mech. Anal., Tome 176 (2005), pp. 351-361 | MR 2185662 | Zbl 1112.35070
[9] A remark on infinity-harmonic functions, Electron. J. Diff. Eqns., Tome 2006 (2006) no. 122, pp. 1-4 | Zbl 1113.35026