In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy . This permits a detailed study of the spectrum in various asymptotic regions of the parameters , and gives improvements and new proofs for many of the results in the field. In the completely resonant case we show that the pseudo-differential operator can be reduced to a Toeplitz operator on a reduced symplectic orbifold. Using this quantum reduction, new spectral asymptotics concerning the fine structure of eigenvalue clusters are proved.
@article{JEDP_2006____A10_0, author = {V\~u Ng\d oc, San}, title = {The Quantum Birkhoff Normal Form and Spectral Asymptotics}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2006}, pages = {1-12}, doi = {10.5802/jedp.37}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2006____A10_0} }
Vũ Ngọc, San. The Quantum Birkhoff Normal Form and Spectral Asymptotics. Journées équations aux dérivées partielles, (2006), pp. 1-12. doi : 10.5802/jedp.37. http://gdmltest.u-ga.fr/item/JEDP_2006____A10_0/
[1] G.D. Birkhoff. Dynamical systems. AMS, 1927. | Zbl 0171.05402
[2] L. Charles. Toeplitz operators and Hamiltonian torus actions. Jour. Funct. Analysis, 2006. To appear. | MR 2227136 | Zbl 1099.53059
[3] L. Charles and S. Vũ Ngọc. Spectral asymptotics via the semiclassical birkhoff normal form. math.SP/0605096.
[4] Y. Colin de Verdière. Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques. Comment. Math. Helv., 54:508–522, 1979. | MR 543346 | Zbl 0459.58014
[5] J. J. Duistermaat. Non-integrability of the 1:1:2 resonance. Ergodic Theory Dynamical Systems, 4:553–568, 1984. | MR 779713 | Zbl 0537.58026
[6] B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit. I. Comm. Partial Differential Equations, 9:337–408, 1984. | MR 740094 | Zbl 0546.35053
[7] M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc. Diophantine tori and spectral asymptotics for non-selfadjoint operators. math.SP/0502032. À paraître dans Am. J. Math., 2005.
[8] R. Pérez-Marco. Convergence or generic divergence of the Birkhoff normal form. Ann. of Math. (2), 157(2):557–574, 2003. | MR 1973055 | Zbl 1038.37048
[9] G. Popov. Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms. Ann. Henri Poincaré, 1(2):249–279, 2000. | MR 1770800 | Zbl 1002.37028
[10] B. Simon. Semiclassical analysis of low lying eigenvalues I. Ann. Inst. H. Poincaré. Phys. Théor., 38(3):295–307, 1983. a correction in 40:224. | Numdam | Numdam | MR 708966 | Zbl 0537.35023
[11] J. Sjöstrand. Semi-excited states in nondegenerate potential wells. Asymptotic Analysis, 6:29–43, 1992. | MR 1188076 | Zbl 0782.35050
[12] S. Vũ Ngọc. Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités. PhD thesis, Université Grenoble 1, 1998.
[13] A. Weinstein. Asymptotics of eigenvalue clusters for the laplacian plus a potential. Duke Math. J., 44(4):883–892, 1977. | MR 482878 | Zbl 0385.58013
[14] Nguyên Tiên Zung. Convergence versus integrability in Birkhoff normal form. Ann. of Math. (2), 161(1):141–156, 2005. | MR 2150385 | Zbl 1076.37045