In [2] Kenig, Ruiz and Sogge proved
provided , and is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in and variants thereof.
@article{JEDP_2005____A6_0, author = {Koch, Herbert and Tataru, Daniel}, title = {Dispersive estimates and absence of embedded eigenvalues}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2005}, pages = {1-10}, doi = {10.5802/jedp.19}, mrnumber = {2352775}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2005____A6_0} }
Koch, Herbert; Tataru, Daniel. Dispersive estimates and absence of embedded eigenvalues. Journées équations aux dérivées partielles, (2005), pp. 1-10. doi : 10.5802/jedp.19. http://gdmltest.u-ga.fr/item/JEDP_2005____A6_0/
[1] A. D. Ionescu and D. Jerison. On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal., 13(5):1029–1081, 2003. | MR 2024415 | Zbl 1055.35098
[2] C. E. Kenig, A. Ruiz, and C. D. Sogge. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J., 55(2):329–347, 1987. | MR 894584 | Zbl 0644.35012
[3] Herbert Koch and Daniel Tataru. Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure Appl. Math., 58(2):217–284, 2005. | MR 2094851 | Zbl 1078.35143
[4] Michael Reed and Barry Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. | MR 493421
[5] Christopher D. Sogge. Fourier integrals in classical analysis, volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. | MR 1205579 | Zbl 0783.35001
[6] J. von Neumann and E.P. Wigner. Über merkwürdige diskrete Eigenwerte. Z. Phys., 30:465–467, 1929.